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Romain Aeberhardt¶ Élise Coudin‖ Roland Rathelot∗∗

December 1, 2011

Preliminary version: Do not quote please

Abstract

This study provides new empirical evidence about the heterogeneity of ethnic em-
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in the model. We find that both the raw and the unexplained employment differ-
entials are larger for low-skill workers than for high-skill ones. One should though
be careful not to conclude that the economic phenomenon underlying these empir-
ical facts is intrinsically heterogeneous: we show that such results can be obtained
in basic theoretical model in which the ratio of the hiring probabilities between the
minority and the majority groups does not depend on workers’ skills. We also build a
theoretical model incorporating the idea of screening discrimination in a search-and-
matching framework and show that the apparent heterogeneity of employment gaps
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1 Introduction

In the United States as well as in Europe, there exist large ethnic differentials in wages and
employment rates (Altonji and Blank, 1999; Algan, Dustmann, Glitz, and Manning, 2010).
However, if the ethnic gaps in wages are large in magnitude, a major part of these can
be explained by differences in human capital. In the US, Neal and Johnson (1996) have
shown that an important part of the black-white wage differential among young adults
can be traced to differences in verbal and mathematical skills measured by the AFQT.1

Symmetrically, Aeberhardt, Fougère, Pouget, and Rathelot (2010) have shown for France
that introducing a detailed description of the latest degree obtained wipes out the wage
gap between French individuals of African origin and French individuals of French origin.
While differences in human capital account for a large deal of the ethnic wage gap, there
is no such evidence for employment gaps, as noted by Ritter and Taylor (2011). Some-
what paradoxically, the literature dealing with ethnic differentials on the labor market has
focused on wage gaps, and has relatively neglected the issue of employment gaps.2

While average measures give a broad picture of labor market differentials, studying their
heterogeneity is interesting for two reasons. First, the policy-makers might be interested
in identifying who are the subgroups suffering from the highest gaps on the labor market.
Second, because the economic phenomena underlying these differentials have not yet been
entirely understood, obtaining new empirical facts may shed a new light on existing the-
oretical models and foster theoretical innovation. As it is the case for average measures,
the heterogeneity of ethnic differentials on the labor market has mostly been studied on
the wage dimension. On the one hand, there has been several empirical papers focusing on
sub-populations, more often on high-skill workers (Black, Haviland, Sanders, and Taylor,
2006, 2008; Bjerk, 2007) than on low-skill ones (Chandra, 2000): to sum it up, ethnic
wage gaps tend to be smaller for high-skill workers. On the other hand, the quantile lit-
erature on wage gaps has been burgeoning in the recent years, following the advances in
econometrics (Fortin, Lemieux, and Firpo, 2011). Much less attention has been paid to
ethnic employment differentials. To our knowledge, Johnson and Neal (1998) is the only
contribution in which ethnic employment gaps are stratified according to individual skills:
they find that “a college degree has a greater effect on the employment opportunities of
black workers”, which means that lower ethnic employment gaps are expected among col-
lege graduates.

In this paper, we study the heterogeneity of the ethnic employment differential with re-
spect to workers’ skills. In line with most of the literature, we focus on males to avoid
complex considerations about the relation between family and labor issues. First, we show
the variation of the differences in employment probability between French workers with
non-immigrant parents and French workers with at least one North-African-immigrant
parent with age and a precise measure of the last obtained degree. We present a new

1See, for instance, Lang and Manove (2011) for a discussion of these results.
2Notable counter-examples include Flanagan (1976), Abowd and Killingsworth (1984), Cain and Finnie

(1990), Welch (1990), Bound and Freeman (1992), Stratton (1993), Darity and Mason (1998), Fairlie and
Sundstrom (1999) or Couch and Fairlie (2010).
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method that allows us to analyze and easily plot the unexplained component of the em-
ployment gap, even when many covariates are included in the model. We find that the
unexplained employment gap is large for low-skill workers and shrinks to zero for very
high-skill ones. Besides the empirical and the methodological contributions, this paper
brings a third, theoretical, contribution to interpret the empirical results. We show that
our results are compatible with a model in which the ratio of hiring probabilities between
minority and majority workers do not depend on skill.

Why should we investigate beyond the mean? Figure 1 brings a direct answer to this
question. It reports the employment gaps between French with North African parents
and French with French parents, by level of education (above) and by age (below). For
each stratum, we isolate the component of the gap which is explained by other human
capital differentials from the unexplained component. While the gap, whether raw or
unexplained, does not exhibit a high degree of heterogeneity with respect to age, there
are large differences with respect to education. More precisely, skilled workers experience
lower employment gaps than unskilled ones.

[Insert here Figure 1]

While this type of figure may prove useful to motivate the study of employment gaps het-
erogeneity, it is difficult to push the analysis much further using this procedure. Indeed,
as the number of subgroups increases, the number of observations per subgroup drops and
so does the accuracy of the results. In other words, as soon as more than one dimension
are included in the analysis (e.g. age and education), this approach will be prone to the
curse of dimensionality. Our idea is to follow the idea of propensity-score or single-index
techniques and to sum up all the covariates that require to be included in the analysis and
to project it on one scalar only. We show that the ethnic gap is higher among individuals
who have characteristics corresponding to lower employment probability.

How should we interpret the uncovered heterogeneity? It would be tempting to interpret
it as the result of some asymmetric discriminatory behaviors, in which, for instance, low-
skill workers are more prejudiced than high-skill ones. No such conclusion can be asserted
based on our results. Within a basic theoretical framework in which hiring probabilities
are allowed to differ across skill and ethnicity, we are able to test the null hypothesis that
the ratio of the hiring probabilities in the two groups is constant across skills. Using our
data and our empirical results, we show that the null hypothesis cannot be rejected, so
that it is not possible to assert that the economic process underlying the heterogeneity is
itself varying with the skill level.

Hiring probabilities are themselves endogenous parameters than may depend on more
structural ones in a complex way. Therefore, it is difficult, without more assumptions,
to make a direct link between the nature of the discrimination process and the ratio of
the hiring probabilities of the two populations. In order to attempt to open the black
box, we design an extension of the screening discrimination model by Cornell and Welch
(1996) that we link to a simplified search-and-matching model. In this model, hiring prob-
abilities are explicitely functions of structural parameters. In particular, we show that a
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homogenous discrimination process, in which the parameters underlying discrimination do
not depend on the worker’s skill, may, depending on the wage-setting parameters, lead to
a constant ratio of hiring probabilities, that we proved compatible with our empirical facts.

This paper is organized as follows. Section 2 presents the data we use, the French La-
bor Force Survey (LFS) from 2005 to 2010, as well as some summary statistics on our
populations. Then, we introduce our empirical methodology and provide our main empir-
ical results, evidencing the heterogeneity of the ethnic employment gap. In Section 3, we
present a basic theoretical framework to help interpret the empirical results. Section 4 goes
one step further: we build a theoretical model of statistical discrimination to structurally
ground our interpretation.

2 Empirical evidence

In this section, we start by documenting the differences between the two groups of interest.
Then, we present the methodology that allows us to analyze the heterogeneity of the
employment gaps and apply it to the ethnic gaps in France.

2.1 Summary statistics and decomposition of the mean

The analysis is conducted using the French Labor Force Survey (LFS), undertaken by IN-
SEE. We use the data collected from 2005Q1 to 2010Q2 as, since 2005, the LFS contains
information on the parents’ nationalities at birth and countries of birth. The children of
immigrants from a given country can therefore be identified as well as their own nation-
ality at birth and country of birth. The LFS contains also a precise description of the
individual status on the labor market as well as information on socio-demographic char-
acteristics – age, gender, qualification, family characteristics. Around 70,000 individuals
aged more than 15 are interviewed each quarter for six quarters in a row. We only keep
the first observation for each individual. As we wish to avoid mixing labor-supply with
labor-demand issues, we only keep males aged 15 to 50 who are not students. The popu-
lation of interest, denoted population D, contains 3,049 French men aged 15-50, born in
France or arrived before 5, with at least one parent born with the citizenship of a North
African country. The reference population, denoted population F , contains 63,975 French
men aged 15-50 whose both parents were born French in France. The main outcome is
the employment status. The one reported in the LFS refers to the ILO definition: an
individual is considered as working if he worked at least one hour during the week.

Tables 1 and 2 report descriptive statistics for both groups. First, French males of North
African origin have characteristics associated with lower human capital. They are less
likely to have reached the highest qualifications (for instance, 2% vs. 5% with a degree
from a Grande École) and more likely to have no qualification at all (30% vs. 16%). They
are also younger (25% between 25 and 30 years old vs. 17%). Finally, they experience
more difficulties on the labor market. They are less often employed (65% vs. 86%) and
more likely not to have ever worked (18% vs. 7%). Those who work are about twice
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less likely to be executive or professional and are also less likely to occupy technical or
educational occupations (16% vs. 21%).

[Insert here Tables 1 and 2]

Tables 3 and 4 reports the results of the estimation of a logit model of employment, run
on both the majority and the minority populations. Age and education are included in
a detailed way in the model, and even interacted. Covariates related to family situation
are excluded, as, especially for men, their endogeneity might severely bias the results.3

Estimates on age and education have the expected signs. The employment probability
increases steadily from the 15-25 to the 45-50 categories. Degrees higher than Bac+3,
technical or health-oriented Bac+2 degrees, and scientific, technical or vocational Bac
degrees increase the employment probability with respect to a General Bac degree with a
major in Humanities.4 Having no degree at all is significantly less favorable than holding
the General Bac. The coefficients of the interaction between being aged 15-35 and the
degree hold, which are introduced to capture potential changes of the labor-market values
of some degrees over time, are mostly insignificant.

[Insert here Tables 3 and 4]

We carry on our comparison of groups D and F by performing a classical decomposition of
the mean of the employment differential à la Oaxaca (1973) and Blinder (1973). We find
that the average employment rate in the majority population is 86% while it is equal to
65% in the minority population. Using the estimates on population F , the counterfactual
mean probability of employment for population D is equal to 81%. The raw gap of 22
percentage points (pp.) can be decomposed into two parts: 6 pp. are explained by the
differences in observable characteristics while 16 pp. are not.

This result in means is however too synthetic to illustrate the full picture. As shown
in Figure 1, differences by qualification exist, which does not appear in a decomposition
of the mean. Hence we propose the following simple framework to study and illustrate
employment gap heterogeneity.

2.2 The heterogeneity of the employment gap w.r.t. observables

Let Y be a binary outcome variable. Our goal is to analyze the observed gap in Y between
two populations D and F . The raw outcome gap is to be decomposed into two terms. One
part is explained by variations in observable characteristics, and the other one remains
unexplained.

Let us consider the potential outcome model advocated by Rubin (1974). We are inter-
ested in the effect of a binary treatment T on the binary outcome Y . “Treatment” is to

3We tried to introduce them in alternative specifications and the results were not qualitatively altered.
4The Baccalauréat, abbreviated as Bac, is an academic qualification that French students take at the

end of high school. The Bac is required to pursue post-secondary studies. Three main types of Baccalauréat
exist: general, technical, and vocational. The notation “Bac+x” means a degree that requires x years of
studies after the Baccalauréat.
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be understood in a wide sense. Here, the treatment is the population group: Ti = 0 if
individual i comes from group F , which is the reference/native population, and Ti = 1
if individual i comes from group D, which is potentially discriminated against. Yi(F )
and Yi(D) are the two potential outcomes of individual i whether i receives or not the
treatment, that is, whether i comes from population F or D, and we are interested in the
difference between both outcomes. Unfortunately, only Yi = TiYi(D) + (1 − Ti)Yi(F ) is
observed.

The usual decomposition-of-the-mean approach (Oaxaca, 1973; Blinder, 1973) consists
in estimating E(Yi(F )|Xi) on population F (for instance with a probit or logit model)
and using the estimation results to predict E(E(Yi(F )| Xi, D)|D) on population D. The
other terms, E(E(Yi(F )|Xi, F )|F ) and E(E(Yi(D)|Xi, D)|D) are directly estimated by
the empirical means in populations F and D. This decomposition is valid when individual
observations are assumed to be independent and that there is no difference between the
minority and the majority populations in unobservable abilities correlated with the out-
come once conditioned on observables. The latter condition is a conditional independence
assumption (CIA), and can be stated in a formalized way as:

Assumption 2.1. Conditional independence assumption

Yi(F ) ⊥ Ti|Xi, ∀i (1)

Whether they explicitly state it or not, all studies which deal with wage or employment
differentials between groups have to rely on such an ignorability assumption, conditional
on observable characteristics. With this assumption, a quite natural way to study hetero-
geneity of employment gaps is to study E(Yi(F )|Xi = x,D) − E(Yi(D)|Xi = x,D), ∀x.
The first term of this difference is estimated on population F and the second one on pop-
ulation D.5

In Figure 2, each dot represents an age × education cell. The position of the dot on the
x-axis is given by the employment rate of the individuals of group F whose characteris-
tics belong to the cell, while the position on the y-axis is given by the mean employment
of individuals of group D that belong to the cell. The points to the right of the figure
thus correspond to more experienced and more educated individuals who have a higher
probability of employment. Under the CIA, this figure provides an empirical counterpart
of E(Yi(D)|Xi, D) as a function of E(Yi(F )|Xi, D), where X contains age and education.
In other terms, assuming the CIA holds, the graph shows the observed probability of em-
ployment in population D versus its counterfactual value if the same individuals belonged
to population F . The above difference corresponds to the gap between the points and
the line of equation y = x. According to this figure, E(Yi(D)|Xi, D) and E(Yi(F )|Xi, D)
are very close for characteristics associated with high employment probability. As the

5Fortin, Lemieux, and Firpo (2011) provides an extensive discussion about the interpretation of de-
composition methods using the treatment-effect literature. They also introduce a Conditional Indepen-
dence/Ignorability Assumption.
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employment probability decreases, that is for smaller values on the x-axis, this differential
becomes wider.

[Insert here Figure 2]

Although this approach is theoretically sufficient to study the heterogeneity of employment
gaps, the credibility of the CIA often requires to include a large number of covariates in
the model. However, as more covariates are included, the number of individuals by cell is
going to rapidly decrease, due to the curse of dimensionality. Unless an extremely large
dataset is available, the preceding approach will thus be impossible to use when a large
number of covariates is necessary to make reliable comparisons between groups.6

The curse of dimensionality is a well documented issue in empirical economics and espe-
cially in the matching litterature. The usual solution, as proposed by Rosenbaum and
Rubin (1983), consists in conditioning by a propensity score instead of the full set of co-
variates. As it happens, a similar method also works here. The following proposition
enables us to overcome the curse of dimensionality when studying the heterogeneity of
unexplained employment gaps.

Proposition 2.2 (Consequence of the CIA with a binary outcome variable).

Yi(F ) ⊥ Ti|Xi, ∀i⇒ Yi(F ) ⊥ Ti|P (Yi(F ) = 1|Xi), ∀i.

Proof: Given that Y (F ) and T are two binary variables, they play a symmetrical role from
a statistical point of view. Therefore, the property highlighted in Rosenbaum and Rubin
(1983) can be applied to Y (F ) instead of T .

Although they share some similarities, the method proposed here is different from the
classical conditioning using a propensity score. Indeed, a propensity score measures the
propensity to be treated, which would be conceptually somewhat hard to maintain in case
of the treatment being the ethnicity. The framework used here differs from that: the
employability index p measures the propensity to be employed, that is the propensity of
a positive outcome.

Proposition (2.2) reduces the dimension of X to a single one:

pi = P (Yi(F ) = 1|Xi) = E(Yi(F )|pi).

Under the CIA, proposition (2.2) entails

E(Yi(F )|pi, D)− E(Yi(D)|pi, D) = E(Yi(F )|pi)− E(Yi(D)|pi).

A natural way of studying the heterogeneity of employment gaps is thus to study the
counterfactual probability of employment as a function of p. The first step consists in
estimating the counterfactual probability of employment as a function of the observables:

6To maintain a sufficient number of observation per cell in figure 2, the education covariate was indeed
grouped into 8 positions instead of 21.
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p = P (Y (F ) = 1|X). This is done with the same logit model as in section 2.1. In a
second step, it is possible to compute a counterfactual probability of employment for each
individual of population D: pi = P (Yi(F ) = 1|Xi). The third step consists in estimating
E(Y (D)|p) (which is a function of p). This is done by computing the empirical average
of Yi(D) for all individuals of D whose counterfactual probability of employment is equal
to p. Because this probability is continuous, this is done using kernel methods. Figure 3
displays the estimate of the counterfactual probability of employment with the specification
detailed in Tables 3 and 4.

[Insert here Figure 3]

Interestingly, figures 2 and 3 share similarities, and the main two comments remain. First,
the unexplained employment gap is sizable for most individuals of the population of in-
terest. Second, the unexplained employment gap seems to decrease steadily for higher
employability levels. Such a graph could remind of a sticky-floor story in which the indi-
viduals whose characteristics tend to drive them away from employment suffer more from
their ethnic background than the ones with higher qualifications. In fact, as detailed later
in this paper, the link between differences in employment gaps and heterogenous discrim-
ination is not so straigthforward. The next section proposes to interpret these empirical
findings at the light of theory.

3 Testing for the homogeneity of discrimination

In the previous section, we showed that the unexplained ethnic employment gap is not
constant with respect to individual characteristics. Can we conclude from this descrip-
tive approach that the economic mechanisms underlying these gaps are heterogenous?
For instance, it would be tempting to infer from the previous figures that discrimination is
higher for men whose age and qualification are associated with higher unemployment. The
idea of this section is to add some theoretical structure to the data and to test whether a
homogenous discriminatory phenomenon is compatible with the previous empirical results.

The hiring process is assumed to have two stages. In a first stage, firms and individuals
randomly meet: this meeting process is assumed to be blind with respect to ethnicity. In a
second stage, firms assess individuals’ productivities and decide to hire them or not. Being
hired conditional on having met occurs with probability pF (resp. pD) for the majority
(resp. minority) group. We show that, at the steady-state of this model, the heterogeneity
of ethnic employment gaps comes down to the heterogeneity of the ratio between hiring
probabilities pD/pF .

3.1 The theoretical framework: Beveridge curves on segmented markets

Individuals are assumed to differ in two dimensions: an observable component x of their
productivity and their ethnic group. One can think of x as the summary of qualification,
age, and any other observable characteristics relevant to the firm. When posting job
vacancies, firms are assumed to target explicitely candidates with characteristics x. This

8



means that only candidates x will apply for jobs x. For each segment x of the labor market,
the meeting process between firms opening vacancies and unemployed workers, is modeled
as usual, using a matching framework, à la Diamond, Mortensen and Pissarides (see, for
instance, Pissarides, 2000). U(x) jobseekers compete for V (x) jobs and the unemployment
rate for individuals of characteristics x is denoted as u(x) = U(x)/L(x) where L(x) is the
labor force with characteristics x. The meeting function is the function M(V (x), U(x))
of the number of vacancies and jobseekers. M(., .) is assumed homogenous of degree one.
The probability for a firm to meet a candidate is thus equal to M(1, U/V ) = m(θ), where
θ = v/u = V/U is the tightness parameter.7 The probability for a jobseeker to meet an
employer is equal to θm(θ). We denote by q the exogenous separation rate.

Combining the Beveridge curves. We assume, for simplicity, that there are no inflows
into, nor outflows from the populations and that q, θ and m(.) do not depend on ethnicity.
The Beveridge curves for both populations write:

uF =
q

q + pF θm(θ)
and uD =

q

q + pDθm(θ)

which leads to the following relation:

1

uD
− 1 =

pD
pF

(
1

uF
− 1)

or, equivalently, using the employment rate e. = 1− u.:

eD =
1

1 + pF
pD

(
1
eF
− 1
) (2)

Thus, the heterogeneity in x comes down to that of pD/pF only. Indeed, despite the fact
that q, θ and m(.) potentially depend on x, they cancel out in the last relation.

Homogenous discrimination (i.e. unrelated to characteristics). One way to
model a homogenous discriminatory behavior is to assume that the ratio of the hiring
probabilities pD/pF does not depend on x. Under this assumption, Equation 2 implies
that the only source of heterogeneity of eD w.r.t. to the observables x is linked to the
one of eF . Figure 5(a) displays an illustrative example with pD/pF = 0.6 and x varying
so that the employment rate eF covers all the segment (0, 1). This employment level eF
refers both to the employment level of a worker from the reference population and to the
potential employment level of the minority worker in a world with no hiring differentials.

It is clear in this example that, although pD/pF is held constant, the employment gap
between the minority and the majority populations differs across the employment level eF .
Figure 5(b) illustrates what happens when the disadvantage in terms of hiring probabilities
decreases with the counterfactual employment probability (i.e. pD/pF increases with eF ).
In both cases, the employment gap is larger in the middle of the graph and cancels out at
the top as in Figure 3.

7U , V , θ and all variables of the model which are not structural parameters depend on x. We omit it
when it is not ambiguous for the sake of lisibility.
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3.2 Empirical application: testing for the homogeneity of discrimination

Building on the previous structure, we wish to test whether pD/pF varies with eF in the
data. Equation (2) may be written as:

eD(x) =
1

1 + exp(ρ(x) + δ(x))
and eF (x) =

1

1 + exp(ρ(x))

with ρ(x) = log(pF θm(θ)) and δ(x) = log pD
pF

functions of x, the skills which are related
to eF . This entails a logistic relationship between eF (x) and ρ(x), and similarly between
eD and ρ(x) + δ(x).

If Λ(.) denotes the logistic function and if we use the observables X (age and education)
to proxy the skills x, we have

P [Y (F ) = 1|X] = Λ(ρ(X))

P [Y (D) = 1|X] = Λ(ρ(X) + δ(X))

We wish to test the two following null hypotheses:

- H01 : δ(X) = 0 corresponds to the absence of discrimination.

- H02 : δ(X) = cst corresponds to a constant pD/pF .

In order to perform the tests, we consider the two following statistical models, in which a
linear index is assumed:

P [Yi = 1|Xi, Ti] = Λ(Xiβ + δ1{Ti = D}) (3)

P [Yi = 1|Xi, Ti] = Λ(Xiβ
F + (Xiβ

D)1{Ti = D}) (4)

We start by estimating (3) and we find δ̂ = −0.95 with standard deviation of 0.04. The
negative sign of δ corresponds to the fact that minority individuals are less employed than
majority ones. The Student p-value being lower than 2e-16, we can confidently reject the

null H01. The numerical value of the estimate δ̂ leads to an estimate of p̂D/pF = 0.39.
Some elements of interpretation of this result will be provided in the next section.

Then, we test H02 by a nullity (LR) test of βD (constant excluded), in model (4). The LR
statistic equals 76.5 and has to be compared to critical values from a χ2 with 67 degrees of
freedom (the number of covariates but the constant). The p-value corresponding to H02

is equal .18, so that we cannot reject the constancy of δ.

Figure 6 provides a graphical representation by exploiting the estimation results of model
(4) and leads to the same conclusions. For each individual in the minority sample, it reports
on the y-axis, the empirical difference δi = log(P [Yi = 1|Xi = xi, Di = 1]) − log(P [Yi =
1|Xi = xi, Di = 0]), and on the x-axis, log(P [Yi = 1|Xi = xi, Di = 0]), computed with
the estimates of model (4). In short, Figure 6 relates δi, the empirical counterpart of δ for
individual i, to the corresponding Λ(ρi). It is a way to illustrate how pD/pF varies with
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eF . The absence of discrimination would correspond to the points being spread symmet-
rically around the horizontal line y = 0. In our case, the points are centered around a
horizontal line y = −0.95, which conforts the hypothesis that δ is constant as a function
of eF . Figure 6 also reports the δ horizontal line with δ estimated in model (3), and the
regression line of the scatter plot. Boths lines are very close to each other.

[Insert here Figure 6]

In this section, we showed that, in a simple model based on a Beveridge curve, a ho-
mogenous discriminatory behavior is compatible with heterogenous employment gaps. In
our case, we were not able to reject the null hypothesis that the ratio of hiring probabili-
ties pD/pF is constant with respect to observable characteristics. In the next section, we
attempt to ground pD/pF theoretically, using a more structural model of discrimination.

4 A statistical-discrimination model of the heterogeneity of
employment gaps

Two recent reviews of existing discrimination theory and empirics, Charles and Guryan
(2011) and Lang and Lehmann (2011), highlight that most of the literature focuses on
models that reproduce empirical facts on wages rather than on employment. To our
knowledge, no existing model specifically attempts to reproduce the kind of heterogeneity
in employment gaps that was uncovered in the previous sections. Still, existing models
are not entirely silent on the issue.

In an employer-discrimination model à la Becker (1957), the parameter pD/pF can be
given a straightforward sense. Let us consider that there are two types of firms: the first
ones are indifferent between hiring a majority and a minority worker whereas the second
ones are prejudiced against minority workers and would only hire majority workers. In
this context, if firms discovered the ethnic origin of the applicant only when they met,
pD/pF would represent the fraction of non-prejudiced firms. Unfortunately, as noted in
Lang and Lehmann (2011), taste-based discrimination models have difficulties explaining
employment gaps without relying on values of their structural parameters that would seem
quite impossible. Here, in order to match the data, the fraction of discriminating firms
would be more than 60 %, which seems extremely high.

In the remaining of this section, we develop a simple model of statistical discrimination
that can generate the type of employment gaps described previously. We build upon the
idea of screening discrimination introduced by Cornell and Welch (1996) and incorporate
it into a search-and-matching model that includes a Beveridge curve, in line with the
previous section.

4.1 General setup

We focus here on predictions concerning the heterogeneity of employment gaps rather than
on predictions about wages, therefore some features of the model are willingly left simple.
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In particular, we keep the assumption of a segmented labor market along some observ-
able characteristics x of the individuals. The firms capture all the surplus and offer an
exogenous wage w(x) which ensures that individuals enter the labor market. Unemployed
workers and firms meet randomly and the hiring takes place if the worker succeeds in a
screening process. There is no on-the-job search and matches split exogenously at a rate
q(x).

Beside x, productivity has a hidden component π. These two are the only relevant quanti-
ties for the hiring of a given candidate. For simplicity, we assume that π is match-specific
(for instance, it can be that a personality trait can be appreciated in a firm but not in
another one). We assume that both majority and minority candidates share the same
distribution of π conditional on x: a uniform on (0, 1). π is unknown to the candidate and
the recruiting firm can only observe a proxy π̂ of π, through a screening process. Using the
same idea as in Cornell and Welch (1996), we assume that the screening process is more
efficient for candidates of the majority group than it is for minority workers. However, we
depart from their framework for the hiring decision rule, because we want it to fit into
a continuous time search-and-matching model. Instead of assuming that the recruiting
firm chooses the best applicant in a pool of workers, we assume that it fixes a threshold,
meets applicants continuously, and hires the first one who scores above the threshold.
This threshold is determined through maximization of the firm’s profit. The firm trades
off between the cost of keeping the vacancy open (h) and the potential improvement of
the quality of the match. If the threshold is set to a high value, the vacancy will be open
for a longer time on average but the expected productivity of the hired worker will also
be higher. The interest rate is denoted r.

4.2 The screening process

The screening process consists in a sequence of tests. Cornell and Welch (1996) use a dis-
crete setting in which some of the tests are informative and others are not. An informative
test is modeled as the result of a Bernoulli draw of probability π. With n informative tests
and a uniform prior distribution, the expected value of π for a candidate with Sn ≤ n
successes is π̂ = (Sn + 1)/(n + 2). The most important here is that the variance of the
posterior distribution of π̂ is increasing in the number of informative tests n. Discrim-
ination occurs with the additional assumption that the number of informative tests is
lower for minority than for majority workers. In this case, the variance of the proxy will
also be higher for majority workers so that they will more often achieve high proxies but
also low proxies. Therefore, depending on the threshold, this framework can generate sta-
tistical discrimination: while prior distributions are identical, posterior distributions differ.

To keep the analysis simple, we assume that n is close to infinity for majority workers, so
that the proxy π̂ is equal to π (perfect information). For minority workers, only a finite
number n of tests are informative, so that the variance of the proxy will be lower than the
one of π.

In this framework, the key notions, which will be used in the firms’ decision strategy, are
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the probability for the firms to meet a worker whose signal π̂ will be above the threshold,
and the expected value of π given that the signal is above the threshold.

For majority workers, π = π̂ and for any threshold C ∈ (0, 1),

E(π|π > C,F ) =
1 + C

2
and P (π̂ > C|F ) = 1− C. (5)

For minority workers, since the signal is discrete, we need only consider discrete values
K ∈ {0, ..., n} for the threshold of the signal π̂:8

E(π|Sn ≥ K,D) =
1

2

(
1 +

K

n+ 2

)
and P (Sn ≥ K|D) = 1− K

n+ 1
(6)

4.3 The demand side and the matching process

We now turn to the demand side of the model and determine the optimal threshold for
the firm. First, we express the firm’s profit, when a vacancy is open (Πv) and when an
employee occupies the job (Πe). Firms set a threshold C∗ (resp. K∗) above which a
worker they meet from the majority (resp. minority) population is hired. The choice of
C∗ (resp. K∗) is such that the expected profits for a vacancy is maximum, taking as given
the tightness θ(x) and the wage w(x). We call λ the fraction of the minority population.

rΠv = −h+m(θ) [(1− λ)P (π > C)E(Πe|π > C)

+λP (Sn ≥ K)E(Πe|Sn ≥ K)−Πv] (7)

rΠe = y(π)− w + q (Πv −Πe) (8)

We recall that m(θ) is the probability for the firm to meet a condidate, h is the cost for
keeping an open vacancy, q is the exogenous exit rate, and r the interest rate.
We assume that y(π, x) = α(x)π.9 This means that the output of the job is the product of
a productive function of the observed skills, α(x), and the match specific productivity π,
on which the firm gets some information π̂ through the screening process. The following
reasoning is conditional on x, (segmented markets) so we write y(π), and α for simplicity.
We also assume that there is free entry on the market so that Πv = 0.

Optimal threshold C∗ for the reference population. For the reference population,
the firm will set the threshold C∗ to maximize P (π > C)E(y(π) − w|π > C)/(r + q) in
Equation 7. Using Equation 5, this is equivalent to maximizing (1−C)(α(1 +C)/2−w).
The maximum is obtained in C∗ = w/α and we suppose that the parameters are such that
C∗ ∈ (0, 1).

8See appendix for computations.
9Note that the output depends on x and π, while the wage depends only on x. This is obviously a

simplifying assumption that should be relaxed if the model had other purposes than just being illustrative.
A wage that depends on x and not on π may occur when wages are set at a collective level and not at the
individual one.
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Optimal threshold K∗ for the minority population. The problem is slightly more
complex in this case because the firm does not observe the exact productivity and the
optimization is done on a discrete set. We assume the number of informative draws n to
be given. The firms will choose a threshold in terms of number of successes K to maximize:

P (Sn ≥ K)E(Πe(π)|Sn ≥ K)

Using the definition of C∗, Πe can be rewritten as Πe = α(π −C∗)/(r + q) and the above
expression is now equal to

α

r + q

(
1− K

n+ 1

)(
1

2

(
1 +

K

n+ 2

)
− C∗

)
=

α

r + q

[
1

2

(
1− K(K + 1)

(n+ 1)(n+ 2)

)
− C∗(1− K

n+ 1
)

]
When a firm chooses a threshold K + 1 instead of K, the gain in the expression within
brackets is C∗/(n + 1) and the loss is (K + 1)/[(n + 1)(n + 2)]. Therefore, firms choose
the threshold K∗, such that

K∗

n+ 2
< C∗ ≤ K∗ + 1

n+ 2
.

In this case, by denoting the hiring probabilities, conditional on meeting, for a minority
individual pD = P [Sn > K∗|D], and for an individual from the reference population
pF = P [π > C∗|F ], we have

pD = 1− K∗

n+ 1
, and

pD
pF

=
1−K∗/(n+ 1)

1− C∗

Figure 7 illustrates this for n = 2: if C∗ < 1/4, then the firms will set no threshold and
pD = 1. If 1/4 < C∗ < 1/2, the firms will put a threshold at Sn ≥ 1 and pD = 2/3.
If 1/2 < C∗ < 3/4, then the firms will only hire the individuals for whom Sn = 2 and
pD = 1/3. If C∗ > 3/4, then firms will never hire individuals from the minority popula-
tion. Overall, with n = 2, if 1/4 < C∗ < 1/3 or 1/2 < C∗ < 2/3, we are in a situation in
which pF > pD.

Let us now compare the structural parameters coming from different markets segmented
by x. For each market, C∗(x) = w(x)/α(x). The higher this threshold the more selective
employers are during the hiring process, given the observed skill-induced wage the worker
is offered, and her observed skill-induced productivity. If the wage is high with respect
to the skill-induced productivity α, the threshold will be high: the firm will be more de-
manding concerning the match-specific component of productivity. On the contrary, if the
wage is low with respect to the observed skill-induced productivity, the firm will be less
selective when hiring.

When C∗ does not depend on x, that is, when the wage is a constant share of the skill-
dependent component of productivity, then pD/pF will be constant with respect to x. The
coefficient of proportionality between α and w may be related to the workers negociation
power in the branch or the sector. When skilled and unskilled workers have the same
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bargaining power, pD/pF will be constant with respect to workers’ observed skills.

In contrast, say that skilled workers have more bargaining power than unskilled ones. Then
w/α and pD/pF increase with x. In this case, employers are going to be more selective
about the unobserved productivity of skilled workers, as their wages are more important
relative to their skill-induced productivity.

To sum up, we made the following assumptions:

• Markets are segmented according to a set of observable characteristics x, namely
education and experience.

• On each market, firms open vacancies and have no means to discriminate ex ante on
the grounds of ethnicity; therefore, the probabilities for minority or majority workers
to meet an employer are identical.

• Firms perfectly observe the match-specific component of productivity in the reference
population but they observe only a noisy signal in the minority population.

They lead to the following main results:

• Some combinations of the structural parameters imply that pD < pF , which is con-
sistent with our empirical observations.

• The ratio pD/pF can be constant or not, depending on the way the wage depends
on x.

• pD/pF is constant, for instance, when the ratio between the wage and the observed
skill-induced productivity does not depend on skills. This is likely to occur when
high skilled and low skilled workers have the same bargaining power.

This simple model based on statistical discrimination is therefore compatible with our
empirical findings: for some values of the structural parameters, one will observe a negative
employment gap against the minority population. The discriminatory process is entirely
homogenous, as the screening process is identical whatever the level x of the considered
market segment. In this case, however, depending on the wage-setting pattern with respect
to x, the ratio pD/pF need not be constant. There are however some combinations of
parameters which entail a constant ratio, consistent with the empirical findings of the
previous section.

5 Concluding remarks

In this paper, we show that the ethnic unexplained employment gap concerning French
males of North African origin is sizable for low-skill individuals and decreases steadily to
become much smaller for the high-skill ones. This result is in line with previous work
based on subgroup analysis, but it goes further in the sense that the method we introduce
allows us to describe this heterogeneity in a more systematic way.
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We also show that much care should be taken in the interpretation of these findings. It
would be tempting to jump to the conclusion that low-skill minority workers are more dis-
criminated against than high-skill ones. On the contrary, we show that these differences
are in fact compatible with a theoretical framework in which the ratio of the hiring proba-
bilities between the majority and the minority group does not depend on skill. Moreover,
we embed a statistical-discrimination model in a search-and-matching framework to ana-
lyze the hiring probabilities as a function of structural parameters. Using this model, we
show that it is possible to interpret a constant ratio of the hiring probabilities as the result
of a statistical discrimination process in which all minority workers are treated equally re-
gardless of their skill level.

However, for sake of simplicity, the theoretical model which we develop here focuses mainly
on reproducing the employment gap heterogeneity whereas the wage part is voluntarily
left simple. Future work could be devoted to developing discrimination models that incor-
porate both recent findings on wage and employment gap heterogeneities.
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Table 1: Summary Statistics

Variables Men

France North Africa

Diploma
Medicine doctorate 0.01 0.00
Master degree and above 0.04 0.02
Grandes Ecoles 0.05 0.02
Univ.: Bac+4, Science-Industry 0.01 0.00
Univ.: Bac+4, other 0.02 0.02
Univ.: Bac+3, Science-Industry 0.01 0.01
Univ.: Bac+3, other 0.02 0.02
Univ.: Bac+2 0.02 0.01
Tech.: Bac+2, Industry 0.06 0.04
Tech.: Bac+2, other 0.05 0.04
Health: Bac+2 0.01 0.00
Bac: Science 0.03 0.03
Bac: Humanities 0.03 0.04
Bac: Technical, Industry 0.02 0.01
Bac: Technical, other 0.02 0.03
Bac: Vocational, Industry 0.06 0.04
Bac: Vocational, other 0.02 0.03
Bac-2: Vocational, Industry 0.26 0.19
Bac-2: Vocational, other 0.04 0.06
Lower Sec. Educ. Deg. 0.08 0.10
No diploma 0.16 0.30

Age
15-25 0.17 0.24
25-30 0.17 0.25
30-35 0.16 0.19
35-40 0.17 0.14
40-45 0.17 0.11
45-50 0.17 0.07

Nobs 63975 3049

Source: Labor Force Survey 2005-2010 (Insee).
Notes: 7% of French men whose parents were both born French never worked, while it is the
case for 18% of French men who were born in France (or who arrived before 5) and for whom
at least one parent had the citizenship of a North African country at birth.
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Table 2: Summary Statistics (continued)

Variables Men

France North Africa

Labor Market Situation
Employed 0.86 0.65
Full-time when employed 0.95 0.93

Occupation (current or last if not employed)
Executive, Professional 0.21 0.12
Technical, Education 0.21 0.16
Clerical, Sales, Service Worker 0.13 0.15
Factory Operator 0.38 0.39
Never worked 0.07 0.18

Socio-demographic
Couple 0.75 0.71
Working spouse 0.48 0.23
No child 0.52 0.53
1 child 0.21 0.20
2 children 0.20 0.17
3+ children 0.08 0.09
Youngest child less than 3 0.12 0.16

Nobs 63975 3049

Source: Labor Force Survey 2005-2010 (Insee).
Notes: 7% of French men whose parents were both born French never worked, while it is the
case for 18% of French men who were born in France (or who arrived before 5) and for whom
at least one parent had the citizenship of a North African country at birth.
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Table 3: Employment Logit estimation
Individuals from . . . population Majority Minority

Education. Ref: Bac, Humanities
Master degree and above 0.76

(0.17)

∗∗∗ 0.23
(0.90)

Medicine doctorate 1.51
(0.40)

∗∗∗ 0.42
(1.17)

Grandes Ecoles 0.54
(0.15)

∗∗∗ 1.18
(1.14)

Univ.: Bac+4, Science-Industry 1.09
(0.43)

∗∗ 13.78
(1024.26)

Univ.: Bac+4, other 0.31
(0.19)

−0.90
(0.72)

Univ.: Bac+3, Science-Industry 1.61
(0.52)

∗∗∗ −0.28
(1.21)

Univ.: Bac+3, other 0.64
(0.20)

∗∗∗ −0.39
(0.81)

Univ: Bac+2 0.21
(0.19)

−0.39
(0.93)

Tech.: Bac+2, Industry 0.90
(0.16)

∗∗∗ 0.06
(0.73)

Tech.: Bac+2, other 0.58
(0.16)

∗∗∗ 0.39
(0.78)

Health: Bac+2 1.36
(0.40)

∗∗∗ 13.81
(720.31)

Bac: Science 0.10
(0.17)

−1.37
(0.68)

∗∗

Bac: Technical, Industry 0.53
(0.20)

∗∗∗ 13.80
(593.08)

Bac: Technical, other 0.25
(0.19)

−0.29
(0.93)

Bac: Vocational, Industry 0.84
(0.18)

∗∗∗ 0.19
(0.73)

Bac: Vocational, other 0.27
(0.23)

1.03
(1.14)

Bac-2: Vocational, Industry 0.14
(0.11)

−0.64
(0.51)

Bac-2: Vocational, other −0.05
(0.14)

0.07
(0.64)

Lower Sec. Educ. Deg. −0.16
(0.12)

−0.70
(0.56)

No diploma −0.91
(0.11)

∗∗∗ −1.50
(0.50)

∗∗∗

Age. Ref: 40-45
15-25 −1.32

(0.06)

∗∗∗ −1.10
(0.19)

∗∗∗

25-30 −0.80
(0.06)

∗∗∗ −0.50
(0.19)

∗∗∗

30-35 −0.40
(0.06)

∗∗∗ −0.03
(0.20)

35-40 −0.11
(0.05)

∗∗ 0.08
(0.18)

45-50 −0.04
(0.05)

0.17
(0.21)

N 63975 3049

Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Dummies for quarters are also included in the model but their coefficients are omitted
for readibility. * means 10%-significant, ** means 5%-significant and *** means 1%-significant.
Asymptotic standard errors are reported in parentheses.



Table 4: Employment Logit estimation (continued)
Individuals from . . . population Majority Minority

Education interacted with age
15-35 * Bac: Other 0.25

(0.14)

∗ −0.33
(0.57)

15-35 * Master degree and above −0.22
(0.17)

0.05
(0.85)

15-35 * Medicine doctorate −0.29
(0.55)

−0.49
(1.54)

15-35 * Grandes Ecoles 0.40
(0.15)

∗∗∗ −1.19
(1.12)

15-35 * Univ.: Bac+4, Science-Industry −0.11
(0.46)

−12.73
(1024.26)

15-35 * Univ.: Bac+4, other −0.02
(0.20)

1.55
(0.74)

∗∗

15-35 * Univ.: Bac+3, Science-Industry −0.08
(0.62)

14.45
(717.63)

15-35 * Univ.: Bac+3, other −0.18
(0.22)

0.67
(0.81)

15-35 * Univ: Bac+2 0.17
(0.22)

−0.59
(0.91)

15-35 * Tech.: Bac+2, Industry 0.17
(0.16)

0.30
(0.64)

15-35 * Tech.: Bac+2, other −0.02
(0.14)

−0.44
(0.67)

15-35 * Health: Bac+2 0.45
(0.53)

0.20
(850.75)

15-35 * Bac: Science 0.21
(0.16)

1.09
(0.57)

∗

15-35 * Bac: Technical, Industry −0.10
(0.20)

−13.82
(593.08)

15-35 * Bac: Technical, other −0.13
(0.19)

−0.20
(0.84)

15-35 * Bac: Vocational, Industry 0.23
(0.17)

0.07
(0.62)

15-35 * Bac: Vocational, other −0.14
(0.23)

−0.93
(1.09)

15-35 * Bac-2: Vocational, Industry 0.26
(0.07)

∗∗∗ −0.03
(0.24)

15-35 * Bac-2: Vocational, other −0.02
(0.12)

−0.77
(0.48)

15-35 * Lower Sec. Educ. Deg. −0.09
(0.09)

−0.24
(0.34)

N 63975 3049

Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Dummies for quarters are also included in the model but their coefficients are omitted
for readibility. * means 10%-significant, ** means 5%-significant and *** means 1%-significant.
Asymptotic standard errors are reported in parentheses.
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Figure 1: Explained and unexplained components of the employment differential stratify-
ing by, row (1): education, row (2): age
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Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Predicted employment probabilities are based on the estimation of a logit model on the
reference population.
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Figure 2: Employment rates in the population with North African parents with respect to
employment rates in the population with French parents, per education×age cells
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Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Education is given by the last obtained degree (in 8 positions) while
age is given in 6 positions. There are thus 48 cells.

24



Figure 3: Average employment probability for the individuals with North African parents
conditional on predicted employability score, kernel estimates.
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Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Confidence intervals are 95% pointwise confidence intervals obtained by bootstrap on
the full sample. Predicted employment probabilities are based on the estimation of a logit on
the reference population. Gaussian kernel estimates with bandwidth h = .05.

Figure 4: Employment probabilities for discriminated and reference groups
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(a) pD/pF constant equal to 0.6
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(b) pD/pF increasing with eF
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Figure 5: Estimation of the theoretical model vs. semi-parametric estimation
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Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Confidence intervals are 95% pointwise confidence intervals obtained by bootstrap on
the full sample. Predicted employment probabilities are based on the estimation of a logit on
the reference population. Gaussian kernel estimates with bandwidth h = .05. The red curve
corresponds to:

eD =
1

1 + pF
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(
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) with
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= 0.39
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Figure 6: Empirical evidence on pD/pF as a function of eF
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Source: Labor Force Survey 2005-2010 (INSEE).
Notes: Each dot corresponds to an individual in the minority sample. The x-coordinate is
log(P [Yi = 1|Xi = xi, Di = 0]), and the y-coordinate is the empirical difference δi = log(P [Yi =
1|Xi = xi, Di = 1]) − log(P [Yi = 1|Xi = xi, Di = 0]). Both are computed with the estimates
of model (4). This illustrates how pD/pF varies with eF . The absence of discrimination would
correspond to the points being spread symmetrically around the horizontal line y = 0. In our
case, the points are centered around a horizontal line y = −0.95 (green line), which conforts the
hypothesis that δ is constant as a function of eF . The figure also reports the regression line of
the scatter plot (red line).
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Figure 7: Hiring probabilities in the majority (straight line) and the minority (steps)
groups once a match has occurred, as a function of the optimal threshold in the majority
group
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Source: Labor Force Survey 2005-2010 (INSEE).
Notes: pF (black straight line) and pD (red steps) as a function of C∗. Information is perfect
for the majority group but the number of informative draws for the minority group is n = 2. If
C∗ < 1/4, then the firms will set no threshold and pD = 1. If 1/4 < C∗ < 1/2, the firms will
put a threshold at Sn ≥ 1 and pD = 2/3. If 1/2 < C∗ < 3/4, then the firms will only hire the
individuals for whom Sn = 2 and pD = 1/3. If C∗ > 3/4, then firms will never hire individuals
from the minority population. Overall, with n = 2, if 1/4 < C∗ < 1/3 or 1/2 < C∗ < 2/3, we
are in a situation in which pF > pD.
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Calculations for the screening process

For majority workers, the calculations are quite straightforward since the signal π̂ corre-
sponds to the real productivity π. Recalling that π ∼ U(0, 1), for any C ∈ (0, 1),

P (π > C) =

∫ 1

C
dπ = 1− C and E(π|π > C) =

∫ 1
C πdπ

P (π > C)
=

1 + C

2

For the minority group, the calculations are slightly different since the productivity π is
not observed but only a proxy of it.10 Let Sn be the number of successes in a series of n
independent Bernoulli draws of probability π.
First, since the underlying distribution of π is uniform on (0, 1), the distribution of Sn,
unconditional on π, is discrete with n+ 1 points of support (0, . . . , n) of equal probability
1/(n+ 1).

Proof:
For k ∈ {0, . . . , n− 1}

P (Sn = k + 1) =

∫ 1

0
P (Sn = k + 1|π)dπ

=

∫ 1

0

(
n

k + 1

)
πk+1(1− π)(n−k−1)dπ

=

(
n

k + 1

)[
−π

k+1(1− π)n−k

n− k

]1
0

+

∫ 1

0

(
n

k + 1

)
k + 1

n− k
πk(1− π)(n−k)dπ

= 0 + P (Sn = k)

= P (Sn = 0)

=
1

n+ 1

Moreover, as noted in Cornell and Welch (1996),

E(π|Sn = k) =
k + 1

n+ 2

Proof:
Bayes formula implies:

fπ|Sn=k(π) ∝ P (Sn = k|π)f(π)

∝ πk(1− π)n−k, π ∈ (0, 1)

The previous calculations lead to:∫ 1

0
πk(1− π)(n−k)dπ =

1

(n+ 1)
(
n
k

) and

∫ 1

0
πk+1(1− π)(n−k)dπ =

1

(n+ 2)
(
n+1
k+1

)
10The following results are already stated in Cornell and Welch (1996) but we provide the calculations

here for sake of clarity.
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And therefore,

E(π|Sn = k) =
(n+ 1)

(
n
k

)
(n+ 2)

(
k+1
n+1

) =
k + 1

n+ 2

Finally,

E(π|Sn ≥ K) =

n∑
k=K+1

(
E(π|Sn = k)

P (Sn = k)

P (Sn ≥ k)

)

=
1

n−K + 1

n∑
k=K

k + 1

n+ 2

=
1

2

(
1 +

K

n+ 2

)
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