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Abstract

Indivividual in couple tend to behave in a cooperative manner. Em-
pircial estimation suggest that couiple decision are Pareto. However, the
litterature examine the couples in isolation, without studying the conse-
quences of couple decision on the society. We propose the first theoret-
ical model to study mobility decision within the couples, which involve
a trade-off between couple benefits and sociatal benefit. We consider a
simple mobility model and compare individual decision, couple involved
in bargaining and cooperative couples.
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1 Introduction
Men and women spend a considerable amount of time each day to go from their
home to their office. Commuting represents one of the most important activity
in everyday life. There has been considerable research in this area, since it is of
course important for the economy, that workers have access to their workplace
under fair conditions.
The first author who has proposed a formal model to describe commuting

behavior is William Vickery (see:[18]). The model works as follows: consider
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one Origin-Destination pair (Residential place and work place), one route, and
one bottleneck (which can be a bridge, a tunnel, or any "weak" segment of
the road, which becomes congested when the flow of vehicles is too large). A
continuum of identical residents wish to arrive at destination at some ideal time
t∗. Because the road has a finite capacity, residents will arrive earlier of later
at destination, and will incur some congestion cost. Users wish to minimize the
sum of congestion cost and schedule delay cost (corresponding to early or late
arrival at destination). A Nash equilibrium can be computed, when no user can
change his/her departure time and strictly decrease his cost.
A stochastic version of this model, when demand is described by a continu-

ous discrete choice model was introduced in transportation by de Palma et al.
[4]. Later on, Richard Arnott pointed out to the first author of this paper, that
such model existed in the economics literature, and with Robin Lindsey, they
extended the original Vickery model [1]. The three authors have explored the
economics of the bottleneck in various dimensions incorporating various sources
of heterogeneity at the demand side and the supply side (including stochastic
capacity and demand). A growing literature has emerged since then, in trans-
portation, urban economics, regional science and engineering. This research
has given the momentum to the development of dynamic models, i.e. models
in which the key decision is the time of use. Even if private transportation is
the easiest and most obvious application, several other applications have been
studied in the context of VADL (Vickrey, Arnott, de Palma & Lindsey) models.
See for example (de Palma and Arnott, 1990 [16] and Forgerau and de Palma,
2009 [7]).
This literature has given an impetus to operational models which can study

commuting, and non commuting behavior on large networks (the closed imple-
mentation of Vickrey model on large netorks in provided in METROPOLIS, a
large-scale simulation model [8]).
We wish to propose here another extension of the seminal Vickrey model, by

considering the individuals are not isolated, but part of a household, and that
within this household, they share common constraints and induce externalities
to each other. In other words, we wish to analize commuting models at the
family level whereas, to the best of our knowledge, it is usually only studied at
the individual level.
Such constraints have been sometimes taken into account either in numerical

models (but with somewhat ad-hoc behaviors), or in operations research models
(for example, when two traveller salesmen have to meet). But in such case, the
modelling of behavior when the decision process is a partially joined process,
has not been studied so far. To the best of our knowledge, this is the fist paper
who introduced the idea of collective models in transportation ([5]). We believe
that it is important to model the dual game of the drivers, who on one hand
try to minimize his own generalized cost (sum of travel time and schedule delay
cost), and on the other hand, take, at some level, into account the generalized
cost (or benefit), or the other member of the family.
Since there is congestion in those system, one should be careful to evaluate

the consequence of as simple behavior as cooperation, which are beneficial at
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the household level. However, it is less clear to know what are the social con-
sequences (at the system level) of this cooperation. This question justifies the
tittle of the current paper.
Note that we will introduce here a new version of the standard dynamic

models. We will assume that the user maximizes benefit (and do not minimizes
cost). This framework is different from the previous ones, and seems to us more
appropriate, since it presents the commuting episode, as one episode in the 24
hours or the individual. In other works, such model would then be directly
extended when other activities (e.g. shopping, leisure, etc.) will be taken into
account. Such model provides a template to construct a 24 hours allocation of
time model, à la G. Becker (see,[3] ).

2 One-population case
We first consider the one-population case. This is essentially the same model
as the one proposed by Vickrey. We model the beginning of the day, starting
at time zero (when everybody is at home) and finishing when the individuals
arrive in their office.
Below, we introduce notations. Note, however, that the model introduced

here differs from the original model, since it assumes that the individual derives
a utility (benefit) during each period of time. Of course, this benefit depends
on the type of activity. We consider one origin, one destination, a continuum of
N identical users, a single road, with capacity s at the bottleneck.

2.1 The unit cost parameters

The unit cost parameters are:

• υI : benefit from being home (alone), one minute

• υ: benefit from being in the car, one minute

• υE : benefit from being in the office (early), one minute

• γ: cost from being in the office, one minute late

We expect that:
υ < υE and υ < υI

We also expect that :
υE < υI < γ.

2.2 Arrival and departure times

The Arrival and departure times are defined as follows:

• td: departure time from home
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• ta: arrival time in the office

• tq: first departure

• tq0 : last departure

• tt
¡
td
¢
= ta − td: travel time

• t∗: desired arrival time in the office (at destination).

• B (.) is utility or benefits

2.3 Early arrive: solution

For early arrivals, the benefit function is:

B
¡
td
¢
= υItd + υ

¡
ta − td

¢
+ υE (t∗ − ta) .

Using the standard bottleneck model, one gets

tt
¡
td
¢
= 1

s

hR t
tq
r (u) du− s (t− tq)

i
dtt(td)
dtd

=
r(td)−s

s
d(td+tt(td))

dtd
= dta

dtd
=

r(td)
s .

Thus, the benefit function is, after substitution:

B
¡
td
¢
=
¡
υI − υ

¢
td +

¡
υ − υE

¢ ¡
td + tt

¡
td
¢¢
+ υEt∗

The first-order condition is, with respect to the decision variable td:

dB
¡
td
¢

dtd
=
¡
υI − υ

¢
+
¡
υ − υE

¢ rE ¡td¢
s

= 0

or:

rE
¡
td
¢
=

µ
υI − υ

υE − υ

¶
s.

Note that υI−υ
υE−υ > 1, since we assume that:

Condition 1 υ < υE < υI ,

This condition means that the user prefers to stay at home alone than to
stay in the office early (i.e. before the job starts). S/He enjoys less pleasure
being in the car.
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2.4 Late arrivals : solution

The benefit function for late arrivals is:

B
¡
td
¢
= υItd + υ

¡
ta − td

¢
− γ (ta − t∗) .

After substitution we have:

B
¡
td
¢
=
¡
υI − υ

¢
td + (υ − γ) ta + γt∗.

and the first-order conditions are:

dB
¡
td
¢

dtd
=
¡
υI − υ

¢
+ (υ − γ)

r
¡
td
¢

s
= 0

Thus the equilibrium solution is:

rL
¡
td
¢
=

µ
υI − υ

γ − υ

¶
s.

Note that 0 < υI−υ
γ−υ < 1, since we assume:

Condition 2 υ < υI < γ.

These conditions imply that being in the car is less enjoyable than being
home, and that the benefit of being at home (one unit of time) is smaller than
the cost of being one unit of time late (losses and more severe than gains, as
prospect theory teaches us, see, e.g. [17]).
Altogether, we have:

Condition 3 (Ranking Unit Benefit) υ < υE < υI < γ.

Note that, without loss of generality, we can assume that: υ = 0.

2.4.1 Individual benefit

At equilibrium, everybody has the same individual benefit. The level of individ-
ual benefit is the same for all users, but the composition of this benefit differs,
from one user to the next user. The social cost can be derived as follows:

B (tq) =
¡
υI − υE

¢
tq + νEt∗ =

¡
υI − γ

¢
tq0 + γt∗

(tq0 − tq) s = N.

This system of tow equations and two unknown implies that:¡
γ − υE

¢
tq + υEt∗ =

¡
υI − γ

¢ N
s
+ γt∗
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The time of the first departure and of the last departure are then equal to:

tq = t∗ − N

s

¡
γ − υI

¢
(γ − υE)

tq0 = t∗ +
N

s

¡
υI − υE

¢
(γ − υE)

.

Therefore:

Proposition 4 The equilibrium time benefit of the extended VADL (Vickery,
Arnott, dePalma & Lindsey) model is given by:

(B∗)Single = υIt∗ − N

s

¡
γ − υI

¢ ¡
υI − υE

¢
(γ − υE)

.

If transportation were instantaneous (teleportation), capacity would be infinite,
all individuals would arrive on time, and the benefit would be υIt∗. Because
the capacity is limited, the benefit is smaller by a cost term C∗, with

C∗ =
N

s

¡
γ − υI

¢ ¡
υI − υE

¢
(γ − υE)

.

The term represents the opportunity cost of not being at home (which maxi-
mized the benefit, per unit of time).
Note that C∗ is minimized for υI = υE , and maximized for υI = γ+υE

2 , so
that:

0 < C∗ <
N

s

¡
γ − υE

¢
4

.

Condition 3 implies that C∗ > 0.
The result should be compared with the standard results. In this case, the

equilibrium cost, denoted by CWickrey is given by

CWickrey =
υEγ

υE + γ
.

3 Couple - Nash solution, two separate routes
We assume in this section that men and women are selfish, and they all maximize
their own benefit, regardless of the benefit of the other spouse.

3.1 The commuting problem for the couples

A subscript, m, w, and c, refer to: "man", woman", and "couple".

Definition 5 Singles get married if their valuation of time at home together is
larger than their valuation of time at home being alone.
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[to be discussed...]
We consider a situation where men and women live in couple. They both

work, and each has a car. They use different route. As a matter of fact, all men
work in the factory located at Dm and all women work in the offices, located
at Dw. The route going from O (the residential place), to Dm has a capacity
denoted by sm. Likewise, the route going from O to Dw has capacity denoted
by sw. We assume that without congestion, the man should leave earlier than
the woman, in order to arrive on time.

3.2 Early arrivals for man and woman - man leaves before
woman

We assume that men leave earlier than women, so that the benefit for the men
and the women are not symmetric. The condition that the man leaves before
the woman can be understood (for the time being) as follows: the woman has
the single key of the house and therefore leaves after her spouse.

• υCm: benefit from being home in couple one minute, for the men

3.2.1 For the man (early):

Bm

¡
tdm
¢
= υcmt

d
m + υm

¡
tam − tdm

¢
+ υEm (t

∗
m − tam)

Bm

¡
tdm
¢
= (υcm − υm) t

d
m +

¡
υm − υEm

¢
tam + υEmt

∗
m

.

3.2.2 For the woman (early):

Bw

¡
tdw
¢
= υcwt

d
w + νIw

¡
tdw − tdm

¢
+ υw

¡
taw − tdw

¢
+ υEw (t

∗
w − taw)

Bw

¡
tdw
¢
=
¡
υcw − υIw

¢
tdm +

¡
υIw − υw

¢
tdw +

¡
υw − υEw

¢
taw + υEwt

∗
w

3.2.3 Solution of a Nash equilibrium

Assume that men and women do not use the route at the same time. Then, for
the men; we have:

dBm

¡
tdm
¢

dtdm
= (υcm − υm) +

¡
υm − υEm

¢ rEm ¡td¢
s

= 0

rEm
¡
td
¢
=

µ
υcm − υm
υEm − υm

¶
s.

We have the same solution as for the singles, except that νIm → υcm. Since
they are married: υcm > νIm. The result can be understood as follows. The man
(who leaves earlier) adjust his margin with respect of being in couple at home,
rather than from being alone at home.
For the woman, we have:
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dBw

¡
tdw
¢

dtdw
=

¡
υIw − υw

¢
tdm +

¡
υw − υEw

¢
∗
rEw
¡
td
¢

s
= 0

rEw
¡
td
¢
=

µ
υIm − υm
υEm − υm

¶
s.

This is the same solution as for the single case.
Note that rEm

¡
td
¢
> rEw

¡
td
¢
, since υcm > υIm, i.e.

Proposition 6 At equilibrium, men encounter more congestion than women if
the benefit of being together, for the women, is larger than the benefit of being
alone, for the women.

The condition υcm > υIm is likely to be true empirically.

3.3 Late arrivals for man and woman - man leaves before
woman

For late arrivals we have, for the man

Bm

¡
tdm
¢
= υcmt

d
m + υm

¡
tam − tdm

¢
− γm (t

a
m − t∗m)

Bm

¡
tdm
¢
= (υcm − υm) t

d
m + (υm − γm) t

a
m + γmt

∗
m

.

Therefore:

dBm

¡
tdm
¢

dtdm
= (υcm − νm) + (νm − γm)

rLm
¡
td
¢

s
= 0.

So that: ©
rLm
¡
td
¢ª
Nash =

(υcm − υm)

(γm − νm)
s,

which is the same as in the single case, except that now υIm → υcm > υIm.
And for the woman:

Bw

¡
tdw
¢
= υcwt

d
w + υIw

¡
tdw − tdm

¢
+ υw

¡
taw − tdw

¢
− γw (t

a
w − t∗w)

Bw

¡
tdw
¢
=
¡
υcw − υIw

¢
tdm +

¡
υIw − υw

¢
tdw + (υw − γw) t

a
w + γwt

∗
w.

Therefore:
dBw

¡
tdw
¢

dtdw
=
¡
υIw − υw

¢
+ (υw − γw)

rLw
¡
td
¢

s
.

So that: ©
rLw
¡
td
¢ª
Nash =

¡
υIm − υm

¢
(γm − υm)

s,

which is the same as in the single case.
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3.4 Global condition

We have used first order condition insofar. It remains to argue that the man
does not wish to live earlier than the woman, and that likewise, the woman does
not wish to leave before the man.
Assume that the man leaves before the woman. Living one minute later

yields a benefit of staying at home is ∆BH = υcm, and therefore, necessarily the
transport cost increase is ∆TC = υcm. Now, if the man leaves one minute later,
but leaves later than the women, by one minute, the transport cost increase is
still ∆TC = υcm, while the benefit of staying at home is ∆BH = υIm, therefore,
the total benefit from this last move is: ∆BH−∆TC = υIm−υcm < 0. Likewise,
it can be shown than the woman has no incentive to leave before the man. The
condition: the woman has the single key of the house and therefore leaves after
his spouse is therefore not necessary. It should be the case at equilibrium.

3.5 Equilibrium cost

The discussion is trivial for the woman, who leaves later. We focus here on the
man, who leaves earlier. We conjecture that the man’s benefit in this case is:

(B∗m)Couple = υcmt
∗
m −

N

s

(γm − υcm)
¡
υcm − υEm

¢
(γm − υEm)

.

Note that it is likely that the social cost is not unique in this problem, since
departure time of men can be swapped between two couples, leaving congestion
cost constant, but decreasing the cost of women.
To keep things comparable, let us assume that spouses have the same pa-

rameter values as the single (except that they value more being in couple than
alone):

(B∗m)Couple − (B∗m)Single =
N
s

1
(γm−νEm)

£¡
γm − νIm

¢ ¡
υIm − υEm

¢
− (γm − υcm)

¡
υcm − υEm

¢¤
.

or, after some reorganization:

(B∗m)Couple − (B∗m)Single =
N

s

¡
υcm − υIm

¢
(γm − νEm)

£¡
υcm + υIm

¢
−
¡
γm + υEm

¢¤
.

The differential (married versus being single) opportunity cost of travel is
given by the My’s factor: Ξ, with:

Ξ =
¡
υcm + υIm

¢
−
¡
γm + υEm

¢
=
¡
υIm − υEm

¢
>0

− (γm − υcm)
>0

Recall that:
νEm < νIm < νcm < γm.

So that the My’s factor can be positive of negative for the man.
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Proposition 7 (Men getting married) The differential opportunity cost of
travel for the man (leaving earlier) Ξ can be negative or positive, being in cou-
ple, compared to the benefit of being single. The condition depends on the unit
benefits of being alone, together, and of being early or late in the office. Ξ is
positive if: ¡

υIm − υEm
¢
> (γm − υcm) .

For the woman, we have:

dBw

¡
tdw
¢

dtdw
=

¡
υIw − υw

¢
+
¡
υm − υEw

¢
∗
rEw
¡
td
¢

s
= 0

rEw
¡
td
¢
=

µ
υIw − υw
υEw − υw

¶
s.

The opportunity cost for the women is the same before and after marriage, since
she is facing at the margin being alone, as when she was single.
Note that this is not optimal, since the men does not take into account in

his decision, the benefit of his spouse.

Proposition 8 (Women getting married) The differential opportunity cost
of travel for the woman (leaving late) is null, i.e. she does not changes her travel
pattern.

3.5.1 Getting married: the impact on congestion

Assume men and women have the same parameter values (but different values
of desired arrival time). We also assume that

Condition 9 υC > υI , i.e. individual prefer to stay with the spouse than
together.

Proposition 10 When singles get married and appreciate more being together
than being alone, congestion cost increases iff υc > υ.

Proof. It suffices to note that

rE
¡
td
¢

s
Single Early

=

µ
υI − υ

υE − υ

¶
<

rEm
¡
td
¢

s
Nash(Couple) Early

=

µ
υc − υ

υE − υ

¶
,

rLw
¡
td
¢

s
Single Late

=

¡
υIm − υm

¢
(γm − υm)

=
rEm
¡
td
¢

s
Nash(Couple) Late

The reason is that the first spouse to depart has now a larger benefit of
staying at home, and therefore less incentive to leave. This creates congestion.
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4 Couple - Nash solution, one single destination
and one route

We assume here that the work locations of men and women are located in the
same place. there is a single route from the origin to the destination, and it is
shared by men and women. (To be done).

5 Cooperative solution
We assume here that the men and the women in the same household fully
cooperate. In this case, they are concerned with the total benefit of the couple.
There is no implications at this point on how the couple marginal benefit from
cooperation (which is positive by definition), is shared.

5.1 Equilibrium

The benefit for the couple, is then:

Bc

¡
tdm, t

d
w

¢
= (υcm − υm) t

d
m +

¡
υm − υEm

¢
tam + υEmt

∗
m +¡

υcw − υIw
¢
tdm +

¡
υIw − υw

¢
tdw +

¡
υw − υEw

¢
taw + υEwt

∗
w

Assume again, that the congestion for the men and the women are indepen-
dent. Then, for the man, we have:

Bc

¡
tdm, t

d
w

¢
dtdm

= (υcm − υm) +
¡
υcw − νIw

¢
+
¡
υm − υEm

¢
∗
rm
¡
td
¢

s
= 0(

rEm
¡
td
¢

s

)
Coop

=
1

υEm − υm

Ã
υcm +

¡
υcw − υIw

¢
Extra term >0

− υm

!
.

Recall that for Nash, we have
©
rEm
¡
td
¢ª
Nash =

³
υcm−υm
υEm−υm

´
, so:(

rEm
¡
td
¢

s

)
Coop

=
©
rEm
¡
td
¢ª
Nash +

υcw − υIw
υEm − υm

.

>0

This analysis suggests that the departure rate under a cooperative solution
involves more congestion.

5.2 Computation of the equilibrium cost, in the coopera-
tive case:

For early arrival, we have:

Bc (tq;m, tq,w) = (υcm − υm) tq,m +
¡
υm − υEm

¢
tq,m + υEmt

∗
m +¡

υcw − υIw
¢
tq,m +

¡
υIw − υw

¢
tq,w +

¡
υw − υEw

¢
tq,w + υEwt

∗
w
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Or:

Bc (tq;m, tq,w) =
¡¡
υcm − υEm

¢
+
¡
υcw − υIw

¢¢
tq,m + υEm ∗ t∗m +¡

υIw − υEw
¢
tq,w + υEwt

∗
w.

For late arrivals, we have:

Bc (tq0;m, tq0,w) = (υcm − υm) tq0,m + (υm − γm) tq0,m + γmt
∗
m +¡

υcw − υIw
¢
tq0,w +

¡
υIw − υw

¢
tq0,m + (υw − υw) tq0,m + γwt

∗
w

Or:

Bc (tq0;m, tq0,w) =
¡¡
υcm − υEm

¢
+
¡
υcw − υIw

¢¢
tq0,m + γmt

∗
m +¡

υIw − γm
¢
tq0,m + γwt

∗
w.

By subscription, we get: (needs check and completion), four equations and two
unknowns,.... . tq0,w, tq,w, tq0,m, tm.

Bc (tq0;m, tq0,w)−Bc (tq;m, tq,w)
=
¡¡
υcm − υEm

¢
+
¡
υcw − υIw

¢
+ υIw

¢
(tq0,m − tq,m)

−γm
¡
N
s + tq,m

¢
+ νEw ∗ tq,w +

¡
γm − νEm

¢
∗ (t∗m + t∗w)

= 0

6 The regimes will be determined endogenously:
Departure regimes

• D: M/W (man first, then woman)

• D: W/M (woman first, then man)

• D: T (man and women together)

Arrival regimes

• Arrival : Early-Early (early man and early women)

• Arrival: Late-Late (late man and late woman)

• Arrival Early-Late (early man and late woman)

• Arrival: Late-Early (late man and early woman)

Congestion

• Men and women use the same route

• Men use route 1 and women use route 2 (or the same route, but with no
overlap).
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Comparison of the two regimes at the aggregate level: cooperation, versus
non-cooperation. The social cost is not uniquely determined. It depends on
how the couples are twined (i.e if two men shift their departure rate, keeping
the departure rate of their spouses, fixed, congestion will remain the same, but
the benefit for the women (for example being less long alone at home), may
increase. I suspect that there is a continuum of social costs.
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