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Abstract

I compare two different ways of integrating mortality into life-cycle mod-
els: the standard additive model with time preferences, on the one hand,
and a formulation that rules out the existence of time preferences, but al-
lows for temporal risk aversion, on the other hand. These models are of
similar complexity, but substantially differ in their fundamental assump-
tions. I show, however, that the latter formulation can reproduce all the
predictions of the additive models, as long as life-cycle behaviors under a
given mortality pattern are considered. It leads, nonetheless, to radically
different predictions for the effects of mortality changes. The impact of
mortality on welfare, impatience and intertemporal choices may actually be
very different from what is usually assumed.
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1 Introduction

Heterogeneity in mortality across periods and regions is one of the most striking features

of recent human history. For example, in Sweden, life expectancy at birth rose from

about 35 years in 1800 to 80 years in 2000. In Zimbabwe, a country severely hit by

the HIV/AIDS epidemics, life expectancy dropped from 60 years in 1985-1990 to 37 in

2003. Moreover, far from being purely exogenous, mortality changes largely results from

individual and social choices, which sometimes prove to be extremely costly. Western

societies are now spending a large amount of public resources to lower mortality rates.

Clearly, if we want to understand why people living in different countries have different

life-cycle behaviors, to analyze the economic impact of mortality changes, or to give

sound advice on how much should be allocated to mortality risk reductions, we need

to think very carefully about how mortality is integrated into life-cycle models.

Surprisingly, there is a dearth of literature on this topic. Most life-cycle models that

account for uncertain survival follow Yaari’s (1965) seminal paper. According to Yaari,

survival uncertainty can be simply incorporated into life-cycle models by weighting

the utility derived from future consumption by survival probabilities. Thus, in Yaari’s

model, expected lifetime utility can be written as:

Z +∞

0
s(t)α(t)u(c(t))dt (1)

where c(t) is the consumption at age t, s(t) the probability of being alive at age t and

α(t) the subjective discount function. Yaari’s model has become the model of reference

for discussing the economic impact of mortality changes1 and is used for providing

policy recommendations on major social issues, such as on the optimal level of health

spending or on pollution regulation2.

Although most economists would surely acknowledge that Yaari’s model is too sim-

ple to be more than a stylized representation of the reality, there is also a general

consensus, that it provides a reasonable starting point for modelling human life cycle

behavior. As a matter of fact, all alternative models that have been suggested are

1See for example Barro and Friedman (1977), Ulph and Hemming (1980), Davies (1981), Sheshinski
and Weiss, (1981), Abel (1986), Hurd (1989), Leung (1994), Brown (2001), Eckstein and Tsiddon
(2004), Gan and Gong (2004).

2For exapmple in the recent contributions of Murphy and Topel (2006) and Hall and Jones (2007)
as well as in EPA (1997).
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nothing else than extensions of Yaari’s model (see for example Moresi, 1999, Halevy,

2005, Drouhin, 2005). Said differently, even if Yaari’s model is generally viewed as per-

fectible, it is commonly admitted that Yaari’s contribution made a first step heading

in the right direction.

The objective of this paper is to challenge this view by providing an alternative

theory, which is a simple as Yaari’s one, but that builds in another direction. The

suggested model, which remains in the standard expected utility framework, involves

abandoning the assumption that agents have pure time preferences (i.e. a non con-

stant subjective discount function) and allowing for temporal risk aversion. It is worth

emphasizing that what is suggested is not a negation of human impatience, but an

alternative theory for human impatience. In short, to the view that human impatience

is unrelated to agents’s risk aversion and mainly driven by an exogenous parameter of

preferences, is opposed the one where human impatience results from risk aversion and

mortality risk.

This alternative way of modelling life cycle preferences has several attractive fea-

tures. Although impatience is "endogenized", all forms of impatience can be obtained.

In fact, it will be formally shown that, as long as we consider life-cycle behaviors under

a given (non-degenerate) mortality pattern, this novel formulation can reproduce (up

to infinitesimally small differences) all the predictions of Yaari’s model. Since, the va-

lidity of Yaari’s model has never been tested by empirical studies using heterogeneity

in mortality across agents, it follows the alternative approach we suggest has, up to

now, at least as much empirical support as Yaari’s model.

Nonetheless, our alternative approach brings new insights on the impact of uncertain

lifetime on intertemporal choice. Our discussion will explain why, contrary to the

conventional wisdom, mortality decline may generate very significant changes in human

impatience. As it will be explained, this may be of great importance to discuss the

impact of longevity extension on capital accumulation and equilibrium interest rate.

Our model also leads to revise the literature on endogenous mortality, with a novel

view on the relation between age and the value of life, which turns to be important for

the evaluation of the welfare gains associated to longevity extension.

The structure of the paper is as follows. In Section 2 we come back on the origin of

Yaari’s model and introduce the alternative "time neutral" model. In Section 3and 4, we
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discuss the fundamental properties (time preferences and temporal risk aversion) that

distinguish both models. In Section 5 we consider life cycle behavior under a given

mortality pattern. Section 6 provides theoretical results on the impact of mortality

changes. It will be complemented by Section 7 that gathers illustrations based on

historical demographic data. Section 8 explores issues related to the value of life.

Section 9 discusses the main conclusions that can be drawn from the present paper.

The appendix contains proofs of the results, as well as a Section A that looks at technical

difficulties that appear when working with the non-additive model and suggests ways

to deal with them.

2 Two Models Individuals’ Preferences

In this paper, I will view a “life” as being a pair (c, T ), where c is an infinitely long

consumption profile, and T a (finite) length of life. The set of possible lives will,

therefore, be:

X = C∞(R+,R+)×R+

This representation might seem odd at first sight since consumption has not been

constrained to zero after death. Instead, consumption after death can theoretically take

any non-negative value. However, as the models that will be considered assume that

people do not care for consumption after death, my results will be formally equivalent

to what we would obtain if consumption was constrained to zero after death. The paper

is about preferences that make it possible to rank lotteries whose outcomes are in X.

2.1 Additive model (Yaari’s model)

The most common formulation of Yaari’s model consists in stating that expected utility

under uncertain lifetime has the shape given by (1). Still, for our purpose it proves

useful to come back on the path followed by Yaari to derive this representation. At the

origin of Yaari’s model is the fundamental assumption that preferences over lotteries

involving lives of different length can be modeled within the standard expected utility
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framework using an additively separable Bernoulli utility function3. More precisely, we

will say throughout the paper that:

Definition 1 Preferences are additive (or of Yaari’s type) if they are represented

within the expected utility framework with a Bernoulli utility function of the form:

Uadd(c, T ) =

Z T

0
α(t)u(c(t))dt (2)

with α > 0 and u0 > 0.

In order to make clear the link between the above definition and the formulation in

terms of expected utility shown in (1), consider the case of lotteries that are character-

ized by a given consumption profile, c, and a lottery on life duration. Denotes by d(T )

the distribution of the age of death that is associated to that lottery on life duration.

The expected utility associated to such a lottery is

EUadd(c) =

Z +∞

0
d(T )Uadd(c, T )dT

Noting s(t) =
R∞
t d(T )dt the the survival function, and integrating by part the

above equation gives:

EUadd(c) =

Z +∞

0
s(t)

∂Uadd(c, T )

∂T
|T=tdt =

Z +∞

0
s(t)α(t)u(c(t))dt

which corresponds to (1). The popular formulation of Yaari’s model given in (1) is

therefore nothing else than a straight application of specification (2) to the case where

uncertainty bears on life duration.

2.2 Time neutral model

As with any economic model, there would be no difficulty to argue that the additive

models is, by its structure, too constraining to provide a faithful representation of

human rationality. A "safe criticism" would then consist in pointing at some particular

3We use the terms "Bernoulli utility function" to avoid any possible confusion between "utility
function" and "expected utility function". Bernoulli utility functions are defined over X. A Bernoulli
utility function composed with the expectation operator, gives an expected utility function, defined
over the set of lotteries with outcomes in X.
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assumption and relaxing it to obtain a more general and less structured representation.

This drift towards more generality and less structure would however magnify identifica-

tion problems. Moreover it would fail to question the necessity to assume the existence

of pure time preferences.

The present paper follows a different kind of argument, challenging the additive

model with a model sharing the same degree of complexity, when measured in terms of

degrees of freedom. More precisely we will consider time neutral preferences, defined

as follows:

Definition 2 Preferences are “time neutral” if they are represented within the expected

utility framework with a Bernoulli utility function of the form:

U tn(c, T ) = φ

µZ T

0
u(c(t))dt

¶
(3)

with φ0 > 0 and u0 > 0.

The additive and time neutral models have many features in common. Actually both

formulations can be seen as diverging extensions of the simplest case where preferences

are represented by the Bernoulli utility function :

U0(c, T ) =

Z T

0
u(c(t))dt

with u0 > 0. Preferences represented by U0 are both additive and time neutral. As

we will see in the following two sections, the additive preferences extend the above for-

mulation by introducing time preferences, while the time neutral preferences introduce

temporal risk aversion.

3 Time Preferences

The concept of pure time preference is an ordinal concept representing impatience in

a context without uncertainty. It can be summarized by the rate of time preference,

which in the continuous time framework is usually defined as follows:
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Definition 3 For any length of life T , any time t < T and any consumption path c,

the rate of time preference is defined by:

ρ(c, t, T ) = − d

dt

µ
log(

∂U(c, T )

∂c(t)
)

¶
|dc(t)

dt
=0

The notation ρ(c, t, T ) is used to stress that, in general, the rate of time preference

can depend on c, t and T. However, with the preferences we are considering, the rate

of time preference at time t only depends on t. Indeed:

Proposition 1 In the additive model, the rate of time preference is given by:

ρadd(c, t, T ) =
−α0(t)
α(t)

(4)

In the time neutral model, it is given by:

ρtn(c, t, T ) = 0 (5)

Proof. From (2) we derive ∂Uadd(c,T )
∂c(t) = α(t)u0(c(t)), which implies (4). From (3)

we derive ∂Utn(c,T )
∂c(t) = u0(c(t))φ0

³R T
0 u(c(t))dt

´
, which implies (5).

Here, lies a fundamental difference between the two models. In the additive case,

people can have pure time preferences while the time neutral model excludes this pos-

sibility.

Still, as will be explained in Section 5, agents with time neutral preferences may

exhibit any kind of (positive) impatience when confronted with lifetime uncertainty.

The additive and time neutral models therefore suggest two very different theories for

human impatience. In the standard approach, supported by the additive model, impa-

tience is inherent to human nature and would exist even in the absence of uncertainty.

On the other hand, the time neutral model, takes for granted that risk aversion and

mortality are inherent to human nature. It then suggests that human impatience may

exclusively result from a rational response to uncertainty and, in particular, to the risk

of death.

The interest of each interpretation might be debated on philosophical grounds.

Instead, I will focus on pragmatic matters and show why opting for one or the other

interpretation might be crucial for very concrete social issues, and in particular to
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understanding the impact of mortality changes.

4 Temporal Risk Aversion

Temporal risk aversion is an adaptation of the general notion of “multivariate risk

aversion” of Richard (1975), to the case of intertemporal choice under uncertainty. It

is used in Ahn (1989) and van der Ploeg (1993). To obtain an intuitive notion of what

temporal risk aversion is, consider the simple case of an individual who lives over two

periods. An individual is temporally risk averse if for any c1 < C1 and c2 < C2 he prefers

the lottery that gives (c1, C2) or (C1, c2) with equal probability to the lottery that gives

(c1, c2) or (C1, C2) with equal probability. To quote Richard (1975), a temporally risk

averse consumer prefers getting some of the “best” and some the “worst”, to taking a

chance on all of the “best” or all of the “worst”. Richard (1975) shows that temporal

risk aversion is related to the cross derivative of the utility function. In continuous

time, temporal risk aversion can be defined as follows:

Definition 4 An individual exhibits:

- temporal risk aversion if ∂2U(c,T )
∂c(t1)∂c(t2)

< 0 for all t1, t2 < T with t1 6= t2.

- temporal risk neutrality if ∂2U(c,T )
∂c(t1)∂c(t2)

= 0 for all t1, t2 < T with t1 6= t2.

- temporal risk proneness if ∂2U(c,T )
∂c(t1)∂c(t2)

> 0 for all t1, t2 < T with t1 6= t2.

It is then fairly simple to note that:

Proposition 2 Agents with additive preferences exhibit temporal risk neutrality. Agents

with time neutral preferences exhibit temporal risk aversion if φ is concave, temporal

risk neutrality if φ is linear, and temporal risk proneness if φ is convex.

Proof. In the additive case ∂addU(c,T )
∂c(t1)

= α(t1)u(c(t1)) and
∂2Uadd(c,T )
∂c(t1)∂c(t2)

= 0.

In the time neutral case ∂tnU(c,T )
∂c(t1)

= u0(c(t1))φ
0
³R T
0 u(c(t)dt

´
and ∂2Utn(c,T )

∂c(t1)∂c(t2)
=

u0(c(t1))u0(c(t2))φ
00
³R T
0 u(c(t)dt

´
.

This is the second fundamental difference between the two models. The additive

model rules out temporal risk aversion while the time neutral model allows for it.

Temporal risk aversion matters when considering attitude towards risks that have

durable consequences, since risks of this kind affect individuals in several periods of
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time. This is for example the case for risks related to wealth investment, since current

wealth affects individuals consumption in future periods. This explains why temporal

risk aversion plays a central role in Ahn (1989), van der Ploeg (1993) or Bommier and

Rochet (2006) who study optimal saving and portfolio choices in models where the

horizon is infinite or known with certainty.

A risk that indisputably has longlasting consequences is that of mortality. Indeed,

the risk of dying at time t is nothing other than the risk of being put in the “death

state” for all times subsequent to t. Thus, we expect temporal risk aversion to deeply

affect rational attitudes towards the risk of death.

Given the obvious durability of death, it is intriguing that the economic literature

that deals with human mortality focuses on the additive specification which assumes

temporal risk neutrality. Several papers did discuss the role of “risk aversion” in the

context of uncertain lifetime but, as a matter of fact, they only considered the addi-

tive specification and discussed the role of the curvature of the instantaneous utility

function u, which has no impact on temporal risk aversion. We know however from

the fundamental contribution of Kihlstrom and Mirman (1974) that, strictly speaking,

increasing individuals’ risk aversion does not involve changing the curvature of u, but

taking a concave transformation of the intertemporal utility function. This is what is

done with the time neutral model, where temporal risk aversion naturally arises.

To end this section, let us remark that the curvature of the function φ, which

generates temporal risk aversion in the time neutral model, can be related to individuals’

risk aversion with respect to life duration. Imagine the (fictive) case of individuals who

have to choose between lotteries involving a single constant consumption path, but

different life durations. Consumption being the same in all outcomes, these individuals

only have to rank lotteries on a single dimensional variable: life duration. Their choices

are then governed by their risk aversion with respect to life duration which can be

measured by a standard Arrow-Pratt coefficient:

−
∂2U(c,t)
∂T 2

∂U(c,t)
∂T

It is a matter of simple calculation to show that in the time neutral model, this coef-

ficient equals u(c)−φ
00(Tu(c))

φ0(Tu(c))
. Considering such simple lotteries may therefore help to
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understand the economic meaning of assumptions that might be made about φ. For

example, assuming that φ is concave (temporal risk aversion) would involve assuming

positive risk aversion with respect to length of life. Assuming that −φ
00

φ0
is decreasing

would involve assuming decreasing risk aversion with respect to length of life.

5 Life-Cycle Behavior Under an ExogenousMortality Pat-

tern

In this section, I consider the case where individuals face an exogenous mortality pat-

tern. Throughout the section, mortality will be described either by the distribution of

the age at death d(t), by the survival function s(t) = 1 −
R t
0 d(τ)dτ or by the hazard

rate of death µ(t) = −s0(t)
s(t) =

d(t)
s(t) . Even though, in this section, I do not compare what

is obtained with different mortality patterns (this is the purpose of Section 6), I will

introduce an index µ whenever I want to stress that an object depends on the mortality

pattern.

Rational individuals with a Bernoulli utility function U(c, T ) who face this exoge-

nous mortality pattern have preferences on consumption profiles given by the following

expected utility:

EµU(c) ≡
Z +∞

0
d(T )U(c, T )dT (6)

A crucial point is that although the time neutral representation assumes that people

have no pure time preferences, temporal risk aversion, together with uncertainty on

the length of life, generate non-trivial time discounting. The intuition, stressed in

Bommier (2006), is that if people cannot avoid the risk of dying young, they should

prefer consuming early in life in order to avoid the very low level of lifetime utility which

would result from simultaneously having a short life and low levels of instantaneous

consumption. This intuition can be formalized by looking at the rate of discount at

time t.

Definition 5 For any consumption profile c, the rate of discount at time t is defined

by:

RDµ(c, t) = −
d

dt
(log(

∂EµU

∂c(t)
)|dc(t)

dt
=0

This extends Definition 3 to the case where the length of life is not known with
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certainty, but is described by an exogenous distribution. The rate of discount depends

on the mortality pattern considered. Indeed:

Proposition 3 In the case of the additive utility function, the rate of discount is given

by:

RDadd
µ (c, t) = µ(t)− α0(t)

α(t)
(7)

For the time neutral utility function, the rate of discount is given by

RDtn
µ (c, t) = µ(t)− µ(t)

R +∞
t s(t1)u(c(t1))φ

00
(
R t1
0 u(c(τ))dτ)dt1R +∞

t d(t1)φ
0
(
R t1
0 u(c(τ))dτ)dt1

(8)

Proof. See Appendix B.

In the additive case, the rate of discount is the sum of the mortality rate and the

rate of time preference, as is well known. An implication of this standard result is

that, although mortality is a risk, the impact of mortality on impatience is found

to be independent of individuals’ risk aversion. This is because of the assumption of

temporal risk neutrality. In the time neutral case, even though individuals have no

pure time preferences, in the typical case where u is positive, φ strictly concave and

mortality greater than zero, the rate of discount is greater than the hazard rate of death.

Temporal risk aversion together with lifetime uncertainty does generate impatience.

Actually, considering time neutrals makes it possible to point at a relation between

risk aversion and impatience. As is known from Kihlstrom and Mirman (1974), chang-

ing the function φ that enter the time neutral formulation simply involves changing

agent’s risk aversion. The more concave the function φ the greater risk aversion. But,

increasing the concavity of φ has also simple consequences on the rate of time discount-

ing.

Proposition 4 For a given instantaneous utility function u, a given consumption pro-

file c such that u(c(t)) ≥ 0 for all t, and a given mortality pattern, the greater the

concavity4 of the function φ the greater RDtn
µ (c, t).

Proof. See Appendix C.
4A real function f is said to be at least as concave as a function g if

−f 00(x)

f 0(x)
≤ −g00(x)

g0(x)
for all x
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Hence, the greater risk aversion, the greater human impatience5. The intuition for

this result will be discussed at length in Section 8 where comparative statics related to

mortality rates are also provided.

Once we found that impatience may result from temporal risk aversion and mortal-

ity, it is natural to wonder about the impatience patterns that can be generated. Bom-

mier (2006) considers realistic mortality rates and exponential or hyperbolic functions

φ. This leads to discount functions that are approximately exponential or hyperbolic.

In fact, by adjusting the functions φ and u, any decreasing discount function can be

generated. Indeed, taking matters further, we will see in the following proposition that

for any given mortality pattern, any additive preferences with non-negative rates of

time preference can be obtained as the limit of time neutral preferences.

Proposition 5 Assume that individuals face an exogenous mortality pattern and that

the hazard rate of death is always positive. For any additive preferences that generate

positive rates of discount6, there exists a sequence of time neutral preferences such that

the corresponding expected utility functions (equation (6)) converge (weakly and up to

positive affine transformations7) towards the expected utility function obtained from the

additive representation.

Proof. See appendix D.

An implication of Proposition 5 is that, when modeling life-cycle behavior under a

given mortality pattern, all the predictions of the additive models with non-negative

rates of time preference can be reproduced, up to infinitesimally small differences, by

time neutral models. Thus, there is no chance to infer from micro data on individual

behavior that the additive formulation with non-negative rates of time preference is

better than the time neutral one, unless heterogeneity in mortality across agents is

considered. This point is particularly important since, to my knowledge, the validity of

the additive assumption has never been challenged by empirical studies that consider

heterogeneity in mortality. In other words, Proposition 5 tells us that, up to now, there

5This relation may be extended to a broader class of models. The proof of Proposition 4 would also
work with specifications that would include both temporal rsik aversion and time preferences.

6 In the additive case the age-specific rates of discount are given by (7). As mortality rates are
assumed to be positive, the rates of discount are positive whenever the rates of time preference (equation
(4)) are non-negative.

7What is meant by “weak convergence up to positive affine transformations” is formalized in the
proof (equations (22) and (23)).
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is no piece of empirical evidence that can give more credit to the additive model than

to the time neutral one.

Interestingly enough, Proposition 5 is not symmetrical. In fact, from equation (19),

in appendix, we see that the expected utility function that represents the preferences

over consumption profiles in the time neutral is, in general, not additive. Thus, it

cannot be obtained as the limit of a sequence of additive expected utility functions.

Although the additive and time neutral models have the same degree of complexity, the

time neutral models provide a wider class of preferences with positive rates of discount

than the additive models, when a given non-degenerate mortality pattern is considered.

That is because preferences over consumption profiles under an exogenous mortality

pattern do not depend on the rate of substitution between consumption and the length

of life in the additive model8, while they do depend on it in the time neutral model.

6 The Consequences of Mortality Changes

In the previous section, we saw that there may be some similarity between the pre-

dictions of the time neutral and the additive models on life-cycle behavior under an

exogenous mortality pattern. More precisely, I showed that for any given mortality

pattern, with positive hazard rates of death, and any additive preferences, with non-

negative rates of time preference, I could define a sequence of time neutral Bernoulli

utility functions such that the corresponding expected utility functions converge to-

wards the expected utility function obtained with the additive formulation. I could

not, however, find a sequence of time neutral utility functions that satisfy this property

for all mortality patterns. In other words, although additive and time neutral prefer-

ences may give similar predictions when a given mortality pattern is considered, they

will predict, in general, contrasted effects of mortality changes.

In particular, a fundamental difference between the two models is that the rate of

discount (Definition 5) will react quite differently to mortality. To stress this point, we

can examine the Volterra derivative ∂RDµ(c,t1)
∂µ(t2)

, which gives the effects of a change in

mortality around age t2 on the rate of discount at age t1:

8Preferences over consumption profiles provided by the expected utility function shown in equation
(18) do not change if a constant is added to u.
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Proposition 6 In the additive case:

∂RDadd
µ (c, t1)

∂µ(t2)
= δ(t2 − t1) where δ is the Dirac delta function

In the time neutral case:

∂RDtn
µ (c,t1)

∂µ(t2)
= 1

µ(t1)
RDtn

µ (c, t1)δ(t2 − t1)

+µ(t1)
φ0(

t1
0 u(c(τ))dτ) +∞

t2

s(τ)
s(t1)

u(c(τ))φ
00
( τ
0 u(c(τ1))dτ1)dτ

φ0(
t1
0 u(c(τ))dτ)+ +∞

t1

s(τ)
s(t1)

u(c(τ))φ
00
( τ
0 u(c(τ1))dτ1)dτ

2 1(t2>t1)

(9)

where δ is the Dirac delta function and 1(t2>t1) a dummy that equals one if t2 > t1, and

zero otherwise.

Proof. See Appendix E.

In the additive case, the result is very simple: an increase in the hazard rate of

death at age t2 of δµ causes an increase in the rate of discount at age t2 of δµ, and has

no impact on the rate of discount at other ages. This is because the rate of discount is

simply the sum of the hazard rate of death and an exogenous parameter.

In the time neutral case, the result is very different. In fact, there are two fun-

damental differences. First, an increase in the hazard rate of death at age t2 affects

positively and in the same proportion the rate of discount at age t2 (first term in equa-

tion (9)). In other words, the elasticity of the rate of discount at age t2 with respect

to the hazard rate of death at age t2 equals 1. Second, a change in the hazard rate

of death at time t2 will affect the rate of discount at all ages smaller than t2. More

precisely, if the hazard rate of death increases of δµ between ages t2 and t2 + dt then,

for all ages t1 < t2, the rate of discount will change from RDtn(t1) to:

RDtn(t1) +

R +∞
t2

s(τ)
s(t1)

u(c(τ))φ
00
(
R τ
0 u(c(τ1))dτ1)dτ

φ0(
R t1
0 u(c(τ))dτ) +

R +∞
t1

s(τ)
s(t1)

u(c(τ))φ
00
(
R τ
0 u(c(τ1))dτ1)dτ

RDtn(t1)× dtδµ

If u is positive and φ strictly concave (that is, if individuals are willing to live longer

and are temporally risk averse), the adjustment is negative. Thus, in that case, the

time neutral model predicts that an increase in the mortality rate at age t2 will have a

positive impact on the rate of discount at age t2 and a negative impact on the rate of

discount at all ages before t2.
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Proposition 6 together with Proposition 4 clarify how mortality and risk aversion

contribute to impatience. An intuitive interpretation of these results can be given.

Mortality actually generates two kinds of risk. A risk on consumption (consumption is

contingent on survival) and a risk on lifetime utility (lifetime utility is typically low in

the case of an early death and high in the case of a late death). In both the additive and

time neutral models, the risk on consumption affects the discount rates in the simplest

way: mortality rate at age t contributes additively to the rate of discount at age t (this

explains the first terms of equations (7) and (8)). The risk on lifetime utility has no

effect in the additive model because of the underlying assumption of temporal risk

neutrality. In the time neutral model, when φ is strictly concave, individuals exhibit

temporal risk aversion. That incites them to re-allocate consumption towards young

ages in order to decrease the risk on lifetime utility. Indeed, by consuming early in the

life cycle, individuals avoid the low levels of lifetime utility that would result from having

a short life with low levels of consumption. In other words, they see the intertemporal

allocation of consumption as a way to (partially) insure themselves against the risk of

death. But the need for insurance at a given age results from three parameters: (1) risk

aversion (2) the probability of incurring damage (death, in the present case) at that

age and (3) the magnitude of the damage (the expected quantity of future pleasures

in case of survival: or, in a first approximation, the life expectancy at that age). The

greater risk aversion the greater the need for insurance. That explains Proposition

4. Mortality affects both the second of third parameters, but in opposite directions.

It enhances the probability of damage, but diminishes the magnitude of the damage.

More precisely, mortality at age t increases the probability of incurring damage at age

t and decreases the magnitude of the damage in case of death before age t. The first

point explains why the second term of (8) (and hence the rate of discount at age t)

increases with mortality at age t. The second point clarifies why an increase in the

mortality rate at age t also causes a decrease in the rate of discount at all ages under t.

Note also that the damage, caused by a death at age t increases with the consumption

that was planned after age t in case of survival. That explains why the rate of time

discounting at age t is increasing with consumption at ages greater than t (as it can

easily been seen from equation 21 in appendix).

In practice, we would like to know what happens when there is a global mortality
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decline that is characterized by a decrease in mortality rates at all ages. According to

the additive model, the result is unambiguous: such a global mortality decline implies

a decline in the rate of discount at all ages. This is no longer true in the time neutral

model. In this latter model, in the typical case where u is positive and φ is strictly

concave, such a global mortality decline may have a positive or a negative impact on

the age-specific rates of discount. Indeed, the rate of discount at an age t was shown to

depend positively on the mortality rate at age t and negatively on the mortality rates at

ages greater than t. There are, therefore, two opposing effects, which can aggregate into

a positive or a negative effect. The computations based on historical mortality rates

that will be provided in Subsection 7.1 show examples of both positive and negative

aggregate effects. Thus, we know that it is impossible to provide a general result on

the impact of a global mortality decline on the rates of discount for the time neutral

model. Some interesting results can, however, be obtained if additional assumptions

are made on how age specific mortality rates are affected by a global mortality decline:

Proposition 7 Consider two mortality patterns described by hazard rates of death

µ1(t) and µ2(t), with:
µ2(t)

µ1(t)
≤ µ2(t

0)

µ1(t
0)
≤ 1 for t ≤ t0 (10)

Then, for all consumption paths such that u(c(t)) > 0 for all t, we have:

RDtn
µ2
(c, t) ≤ RDtn

µ1
(c, t) for all t.

Moreover, if, in addition, φ is strictly concave, −φ
00

φ0
non-increasing and mortality

non-decreasing with age, for all constant consumption paths such that u(c) > 0, we

have:

RDtn
µ1
(c, t)−RDtn

µ2
(c, t) ≥ RDadd

µ1
(c, t)−RDadd

µ2
(c, t) = µ1(t)− µ2(t) for all t

Proof. See appendix F.

According to the first point of Proposition 7, if we consider a “high mortality”

context (µ1) and a “low mortality” context (µ2), such that mortality is higher at all

ages in the “high mortality” context and the relative difference in mortality rates,

| log(µ1µ2 )|, decreases with age, we know that the time neutral model will predict higher
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rates of discount in the “high mortality” context.

Moreover, the second point of Proposition 7 indicates that if −φ
00

φ0
is positive and

non-increasing9 and if mortality is increasing with age10, the difference in the rates of

discount will exceed the differences in the mortality rates. That means that the rates

of discount are, in that case, more sensitive to mortality in the time neutral model than

in the additive model.

Interestingly enough, the results of Proposition 7 can be compared with the findings

of empirical studies on heterogeneity in discount rates. Indeed, differential mortality

has been quite well documented by demographic studies. It is well known that in the

USA, being a woman, or being rich, educated or white are factors that are negatively

correlated with mortality11. Moreover, it is also often found that whatever the so-

cioeconomic status considered (e.g. gender, education, etc.), the differential mortality,

measured by the absolute value of the difference in the log of mortality rates, tends to

decrease with age after ages 30 or 40. Thus, from Proposition 7, according to the time

neutral model, we expect to find that in the USA, women, rich, educated and white

individuals have lower values of RDµ − µ (the difference between the rate of discount

and the mortality rate). Conversely, the additive model predicts that RDµ − µ should

be the same across the population.

Two well-known empirical studies concur with the predictions of the time neutral

model. Lawrance (1991), who used data from the PSID, found that the rate of dis-

count is negatively correlated with education, wealth and being white12. Moreover the

differences in the rates of discount she observed are much larger than the differences in

mortality rates13. Warner and Pleeter (2001), who analyzed how US military service-

men chose between lump-sum payments and pensions, found that men, less educated

people, blacks and those with low incomes had higher rates of discount. They also

found a heterogeneity in the rates of discounts that largely exceeds the differences in

9This is equivalent to stating that individuals provided with a constant consumption profile exhibit
a positive and non-increasing risk aversion with respect to life duration.
10Demographic studies show that this is generally the case after age 25.
11See for example the data provided by the Berkeley Mortality Database for comparison by gender

or by race, and the results of Brown, Liebman and Pollet (2002) for data on differential mortality by
gender, race and education.
12Lawrance used household data and did not explore the role of gender.
13Remember that in a country such as the USA, the mortality rate is only about 0.2 % at age 40

and does not reach 1% before age 60. Differences in age-specific mortality rates across socio-economic
groups are typically a fraction of a percent and much smaller than the differences in the rates of discount
found by Lawrance (which are of a few percent).
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mortality rates. These findings are consistent with the time neutral model, while they

cannot be explained by the additive model, without introducing further assumptions

on the relation between mortality and the discount function14.

7 Illustrations Using Historical Mortality Rates

The recent history of developed countries is characterized by a huge decline in mortal-

ity rates. In order to show how important the difference between the additive models

and the time neutral models can be when considering historical mortality decline, we

conduct below three exercises. The first aims at illustrating that even if impatience is

driven by mortality in the time neutral model, it may well happen, even in realistic

cases, that mortality risk reduction lead to enhance human impatience. The second

deals with the effect on mortality decline on consumption smoothing. The third dis-

cusses the macro-economic consequences of mortality decline.

7.1 Impatience at age 30

Imagine that in 1937, the year in which Samuelson’s paper on the Discounted Util-

ity Model was published (Samuelson, 1937), we observed that individuals of age 30

exhibited a rate of discount of 4% and explore the three following possibilities:

• Case A (Additive preferences): This rate of discount is due to the fact that

individuals had additive preferences and expected to die according to the average

age-specific mortality rates observed in the USA in 1937.

• Case B (Time neutral preferences with a constant absolute risk aversion with

respect to length of life): This rate of discount is due to the fact that individuals

had time neutral preferences with a function φ of the form φ1(x) =
1−e−kx

k , and

that they expected to have a constant quality of life and to die according to the

mortality rates of 1937.

• Case C (Time neutral preferences with a constant relative risk aversion with

respect to length of life): This rate of discount is due to the fact that individuals

had time neutral preferences, with a function φ of the form φ2(x) =
x1−κ−1
1−κ , and

14 It could be argued, for example, that the discount function α(·) is related to morbidity, and
decreases more rapidly for individuals who have higher mortality rates.
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expected to have a constant quality of life and to die according to the mortality

rates of 1937.

Now, let us ask the following question: in each case, what would have been these

individuals’ rates of discount if these individuals had expected to face the mortality

rates observed in subsequent years? In solving this problem, we find what the effect

of mortality decline on the rate of discount at age 30 would have been if individuals’

preferences had remained the same.

In practice, I used the historical cross-sectional mortality rates provided by the

Berkeley Mortality Database. As shown in Figure 1, the mortality rate at age 30

decreased rapidly between 1937 and 1960. Between 1960 and 2000, the mortality rate

at age 30 had a non-monotonic evolution, but its global trend indicates a slow decline.

Life expectancy at age 30 increased during the whole period (Figure 2).

For our exercise, I calibrated the rate of time preference (for case A), the function

φ1 (for case B) and the function φ2 (for case C), so that the rate of discount of a 30

year-old individual was of 0.04 per year with the mortality of 1937. Then, for each year

from 1938 to 2000, I computed the rate of discount that followed from the mortality

observed in those years.

The results are shown in Figure 3. We know from Proposition 6 that in the case

of additive preferences, the rate of discount is just the sum of the mortality rate and

the rate of time preference. Thus, the solid line that gives the rate of discount in the

additive case exactly follows the evolution of the mortality rate shown in Figure 1.

However, as the mortality rate is very small compared to the rate of time preference

(note that the scales of Figures 1 and 3 differ by a factor of 10), the rate of discount is

found to decrease only very slightly. It equals 0.03754 in 1960 and 0.03739 in 2000.

The two dashed lines, which represent the time neutral preferences, show radically

different patterns. In Case B, the mortality decline that occurred between 1937 and

1960 leads to a drop of 0.01743 in the rate of discount. That is 7.1 times greater than

what we would have predicted using the additive model! This is due to the major decline

in the mortality rate at age 30. After 1960, the rate of discount goes up and down,

but the average trend shows a slight increase. Thus, during this period, the evolution

of the rate of discount shows a global trend that does not follow the evolution of the

mortality rate. In fact, during the period from 1960-2000, the mortality rate at age
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30 declined only slightly while life expectancy increased considerably. I explained after

Proposition 6 that in the time neutral model, the rate of discount at age 30 is linked to

mortality through two different channels. It is positively related to the mortality rate

at age 30, and negatively related to the mortality rate at older ages. We see from our

results that during the period from 1937 to 1960, it is the first factor that dominates,

while after 1960, if we look at the global trend, it is the second one that predominates.

The results in Case C are comparable to those in Case B, although they further

diverge from the results of the additive model. The interpretation is similar to Case B.

Overall, we found that the time neutral model can lead to radically different pre-

dictions of the impact of mortality decline. A drop of 1.743 % or of 1.928 % in the

rate of discount at age 30 between 1937 and 1960, as we respectively found in Cases B

and C, is likely to generate a large impact on savings, human capital investment, and

henceforth, on economic growth. The additive model would have predicted a drop in

the rate of discount of only 0.25 %.

7.2 Life cycle consumption smoothing

To deal with more concrete issues, let us look at consumption smoothing behaviors.

Consider the case of an individual who earns 20000 dollars a year between ages 20

and 60 and nothing afterwards. Assume that there are perfect annuity markets and

only one risk free asset whose rate of return equals 3% per year. How would such an

individual smooth consumption and save along the life cycle? Let us consider three

specifications for individuals’ preferences:

1 - Additive model : Uadd =

Z T

0
e−ρt

∙
u0 +

c(t)1−γ − 1
1− γ

¸
dt

2 - Time neutral model (CARA) : U tn
cara = 1− exp

µ
−k
Z T

0

∙bu0 + c(t)1−γ − 1
1− γ

¸
dt

¶
3 - Time neutral model (CRRA) : U tn

crra =
1

1− κ

µZ T

0

∙eu0 + c(t)1−γ − 1
1− γ

¸
dt

¶1−κ
For each specification, we can compute the optimal life cycle behavior for two different

mortality patterns15. The first one is given by the mortality rates that were observed

15 In all three specifications, the intertemporal elasticity of substitution, 1
γ
, was set at 0.9. The

constants ρ ,k, κ, u0, u0 and u0 were chosen so that, with 1950 mortality, a 40 year old individuals have
a rate of discount of 0.03 per year and a Value of a Statistical Life of 4 million dollars. Consumption
before age 20 is assumed to be exogenous and equal to 16000 dollars per year. The optimal consumption
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in 1950 in the USA. The second one corresponds to the 2000 mortality rates. The

predicted age-specific consumption and wealth profiles are shown in Figure 4.

When preferences are additive, the optimal consumption profile has the same shape,

whether we consider 1950 or 2000 mortality rates. The “2000 consumption” is obtained

from the 1950 one by a simple scaling down. It is in fact well-known that, with perfect

annuity markets and a constant intertemporal elasticity of substitution, the rate of

consumption growth is independent of mortality rates. Consumption is lower with

2000 mortality rates, because longevity extension generates a dilution effect.

The time neutral specifications suggest very different pictures. Firstly, the 2000

consumption and 1950 consumption no longer have the same shape. In both the CARA

and the CRRA cases, 2000 consumption lies below 1950 consumption at young ages,

and above at old ages. This reflects the fact that mortality decline has a two-fold

effect. Firstly, there is a dilution effect, as in the additive case. Secondly, and here is

the novelty, there is a significant impatience effect.

To see how significant is the divergence in predictions, we can consider individuals’

wealth at retirement. The additive specification suggests that wealth at retirement

increases by 14% when passing from 1950 to 2000 mortality rates. Rational individuals

increase their savings because the retirement period becomes longer. However, the time

neutral specifications suggest much larger increases (26% for the CARA case and 28%

for the CRRA case). Even in such a rough example, where retirement age does not

adapt to mortality decline, accounting for the change in impatience appears to be as

important as accounting for the extension of the retirement period.

7.3 Aggregate saving and equilibrium rate of interest

We have explored the impact of mortality change on impact individual behavior. The

additive and time neutral model were found to provide contrasted predictions. Natu-

rally we expect that this will also translate in quite different macro-economic predictions

for the consequences of mortality decline.

In order to illustrate this point we consider below a model inspired from the one

developed in Blanchard (1985) and discuss the aggregate impact of mortality decline in

this setting. For any time T there are enTdT agents that are born between time T and

profiles were numerically computed with the method detailed in Appendix A.
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T +dT . Mortality rates may vary with age but (for a given age) not with calendar time

(for simplicity we will focus on the comparison of steady states). To an age-specific

hazard risk of death µ(.) corresponds a survival function s(t) = exp(−
R t
0 µ(τ)dτ). At

any time T there are therefore en(T−t)s(t)dt agents of age between t and t+ dt in the

population. Agents have an exogenous age-specific productivity profile ω(t). The labor

income of t year old is yω(t) where y is the market price for one unit of productivity.

There are perfect intertemporal and insurance markets and no uncertainty beyond

lifetime uncertainty.

In order to show how crucial are the assumptions on individual preferences we pro-

ceed to the following exercise. Imagine that the society is observed in steady state A

which is characterized by a survival function sA(.) a rate of interest rA, a wage per

unit of productivity yA and an age specific consumption profile cA(.). Assume that

this steady state may be rationalized by two different macro-economic models that

only differ by the specifications of individual preferences (the assumptions regarding

the production sector being identical in both models and specified later on). More

precisely, we assume that one model relies on the additive specification of individual

preferences, while and the other uses the time neutral one 16. Consider then a society

where mortality rates are exogenously set to different levels µB(t) < µA(t), correspond-

ing to a survival function sB(.) and ask how the steady state B associated to that

mortality pattern would compare to A, according to both models. Doing so, we show

to what extent the assumption made on individual preferences influence predictions

about the macro-economic impact of mortality decline.

7.3.1 Aggregate wealth in an open economy

As in Blanchard (1985) we consider in turn an open and a closed economy. Markets

are assumed to be perfect. In a small open economy the rate of interest and labor

income are exogenous. We denote r = rA = rB and y = yA = yB. We will discuss

how the ratio of aggregate wealth over aggregate income depends on mortality. Using

the results of Bommier and Lee (2002), the ratio of aggregate wealth over aggregate

16 In both cases we will assume a constant intertemporal elasticity of substitution 1
γ
. From Proposition

5, we can deduce that, when intertemporal markest are perfects, rationalization by both an additive

and a time neutral model is possible as soon as
d
dt
cA(t)

cA(t)
< rA

γ
.
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income in a steady state i (i = A,B) is:

Wi

Yi
=

1

r − n

µ R∞
0 si(t)ci(t)e

−ntdt

y
R∞
0 si(t)ω(t)e−ntdt

− 1
¶

(11)

With perfect intertemporal markets, the individual budget constraint writes:

Z ∞

0
si(t)ci(t)e

−rtdt = y

Z ∞

0
si(t)ω(t)e

−rtdt

Plugging this latter equality into (11) we obtain:

WB

YB
− WA

YA
=

1

r − n
(I + J)

where

I =

∞
0 sB(t)cA(t)e

−ntdt
∞
0 sB(t)cA(t)e−rtdt
∞
0 sB(t)ω(t)e−ntdt
∞
0 sB(t)ω(t)e−rtdt

−

∞
0 sA(t)cA(t)e

−ntdt
∞
0 sA(t)cA(t)e−rtdt
∞
0 sA(t)ω(t)e−ntdt
∞
0 sA(t)ω(t)e−rtdt

J =

R∞
0 sB(t)ω(t)e

−rtdtR∞
0 sB(t)ω(t)e−ntdt

µR∞
0 sB(t)cB(t)e

−ntdtR∞
0 sB(t)cB(t)e−rtdt

−
R∞
0 sB(t)cA(t)e

−ntdtR∞
0 sB(t)cA(t)e−rtdt

¶
(12)

The change in the ratio of aggregate savings over aggregate income is decomposed

in the sum of two terms. The term I may be qualified of a structural effect, that

measures the aggregate impact of a change in mortality if agents had no reaction other

than rescaling their consumption in order to match their budget constraint. The term J

may be called the behavioral impact that account for the fact agents’ saving strategies

may very with mortality.

Since the term I depends on cA but not on cB it will be the same whether the

additive or time neutral rationalization are chosen. The choice of a model of individual

rationality is however determinant for evaluating J . Rescaling the consumption profiles

cA or cB by positive factors in equation (12) does not change J . In other words, J

depends on the shape of the consumption profile in states A and B, but is independent

of the levels of these consumption profiles. An immediate consequence is that J = 0

when individual preferences are assumed to be additive.

When preferences are time neutral, the shape of the optimal consumption profile

depends of the mortality pattern (as illustrated in Figure 4a). Thus J does not nec-

essarily equal to zero. The sign of J, however, cannot be determined without making
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further assumptions on the mortality patterns µA and µB. In particular the fact that

mortality rates are lower in state B than in state A does not imply that J is positive:

this reflects the fact that, even if impatience is generated by mortality, mortality decline

has an ambiguous impact on human impatience (see Proposition 6 and the related dis-

cussion). Still, if mortality decline generates a drop in the rate of discount that is

greater than the drop in mortality rates (which was shown to be the case under a set of

sufficient condition in Proposition 7) we get that
− d
dt
cB(t)

cB(t)
<
− d
dt
cA(t)

cA(t)
which implies that

1
(r−n)J > 0. In such a case, the additive formulation would lead to under-estimate the

impact of mortality decline on wealth accumulation, as compared to the time neutral

one.

As an illustration we deal with the case where µA corresponds to the 1950 mortality

rates and µB to the 2000 mortality rates. We assume that the steady state A correspond

to a rate of interest of 3% per year, a zero population growth rate and the income and

consumption profiles that are plotted in Figure 4b. Rationalization by a time neutral

model is obtained by construction, since Figure 4b was precisely drawn using time

neutral preferences. Rationalization by an additive model is straightforward and relies

on a non exponential discount function17.

According to the additive model, the ratio of aggregate wealth18 over aggregate

income would have increased by 28.6 % when passing from 1950 to 2000 mortality

rates. The time neutral model predicts an increase of 47.6%, the behavioral term, J,

being almost as large as the structural term, I.

7.3.2 The equilibrium rate of interest

We now consider the case of a closed economy. We assume a zero population growth

rate (n = 0). The production function is given by a Cobb-Douglas function of the form

F (K,L) = AKβL1−β = where K and L represent aggregate capital and labor in the

economy. Capital and labor are remunerated at their marginal productivity, the rate

of interest and wages being therefore endogenously determined.

Assume that is observed a reference steady state where mortality rates correspond

17Several arguments have been suggested in literature for using non exponential discount functions.
Murphy and Topel (2006) argue for example that non exponential discount functions may result from
life-cycle changes in health.
18We only consider savings of people of age 20 or above.
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to those of 2000 US life table, the rate of interest equals 3% per year and the con-

sumption and income profiles are those given in Figure 4b. And ask, what would be

the characteristics of steady state that would be obtained if preference and production

parameters were hold constant, but if age-specific mortality rates are set at the levels

that were observed in past periods or at the levels they will plausibly reach in the future

(we use historical and projected US-lifetable from 1900 to 2080). Doing so we identify

the "comparative steady state" impact of mortality changes, holding everything else

constant19. Again we compare the case where the consumption profile cA plotted in

Figure 4b is rationalized through the time neutral (with the parameters used to draw

Figure 4b), to the case where it is rationalized by an additive model with the same

intertemporal elasticity of substitution and a non exponential discount function.

Whether one chooses the time neutral or the additive model to rationalize the refer-

ence steady-state, we find that the historical and projected mortality decline leads to a

decrease in the rate of interest (see Figure 5). The magnitude of the decline is however

quite different. In the additive model the effect is driven by the fact that people live

longer and have to save for a longer period of retirement. In the time neutral model, in

addition to this effect, there is an impatience effect that plays a major role. Mortality

decline makes people appear less impatient on average and aggregate savings supply

increases. The equilibrium rate of interest decreases accordingly. As a consequence, the

time neutral model predicts a decrease in the interest rate of 2.33 percentage points be-

tween 1900 and 2000, while the additive one only predicts a decrease of 0.79 percentage

point. Prediction for the future are also quite different since the time neutral model

predict a decline in the rate of interest between 2000 and 2080 of that is about twice

larger as the one predicted by the additive one (0.53 percentage points versus 0.25).

Historical data on interest rates show very large fluctuations. That make it diffi-

cult to identify the long term evolution of interest rates. A linear regression on the

series from Siegel (1992) indicate an average decline of the real risk free rate of about

3.5 percentage points by century during the period 1800-1990. The 1889-2000 series

of Mehra and Prescott (2003) indicates a decline of about 1.6 percentage points per

19Of course, in reality, economies are not in steady-states and many dynamic aspect may turn to
play a key role. This comparative steady state exercice aims at providing an order of magnitude of the
long term impact of mortality decline, but not at explaining what might occur in a realistic dynamic
setting.
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century. These numbers have however to be taken with extreme precautions since the

confidence interval are very large. It would therefore be unfair to use them as a defin-

itive argument against the additive model. Still, they do not seem to be at odd with

the predictions of the time neutral model.

Whether we consider the case of an open or a closed economy the contrast between

the predictions of the additive and time neutral is quite substantial. What basically

comes out of the several simulations is that using the additive model (and therefore

ignoring the endogeneity of human impatience) when assessing the impact of mortality

decline may lead to ignore about half of the story.

8 The value of longevity gains

An important aspect of mortality changes is that they are not exogenous. Mortality

largely depends on (public and private) expenditures. A natural question naturally is

whether enough resources are (and have been) allocated to the reduction of mortality

risks. A number of studies based on the additive model intended to measure the welfare

gains associated to mortality risk reduction (Becker, Philipson, Soares, 2003, Murphy

and Topel, 2006, Hall and Jones, 2007, EPA, 1999). Some of these studies reached

very strong conclusions on the optimal amount of public health expenditures or on the

interest of continuing environmental policies such as those delineated by the Clean Air

Act in the USA. An intriguing question is to what extent the conclusions of theses

studies would be altered if the time neutral model were used instead of the additive

specification.

For matters related to endogenous mortality, the sharpest contrast between the

additive and time neutral occurs when looking at the life cycle variations of the age

specific value of life. The intuition is that introducing temporal risk aversion involves

introducing risk aversion with respect to life duration (see Bommier 2006). Risk aver-

sion increases individuals willingness to avoid particularly bad consequences (such as

an early death) relatively to the willingness to avoid less dramatic consequences (such

as a death at old ages). Consequently, and this is confirmed by the formal result given

in Section 8.1, the intuition is that the value of a statistical life (VSL) should decline

faster with the time neutral model than with the additive model.
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Theoretical consideration about the relation between age and VSL are of crucial

importance since empirical estimates of the VSL are typically derived from choices of

relatively young individuals (workers, in most cases), while policy guidance requires to

evaluate the impact of mortality reduction that mainly occur at much greater ages. For

example, Hall and Jones (2007) calibrate their model using empirical values of the VSL

of a 35-39 years, and then use that calibrated model to predict the VSL at ages up to

100. A similar strategy was adopted in Murphy and Topel (2006). There is therefore a

great deal of extrapolation underlying the conclusions of theses studies.

The question we address below is: to what extent this required extrapolation would

change if opting for the time neutral specification instead of the additive one. Our

discussion will gather a formal result as well as numerical illustrations.

8.1 A formal result

In the following, the VSL at age t is defined as the opposite of the marginal rate of

substitution between mortality risk at age t and consumption at time t.20

V SL(c, t) =
−∂EµU

∂µ(t)

∂EµU
∂c(t)

Bommier and Villeneuve (2006), with a model with endogenous labor supply, explain

how VSL may be directly revealed from empirical studies on wage risk trade-offs. The

notation V SLadd(c, t) and V SLtn(c, t) refer then to the V SL that is obtained when

assuming that preferences are additive or time neutral, respectively.

Proposition 8 Consider time neutral and additive preferences that assume the same

intertemporal elasticity of substitution and that are such that (for given rate of interest,

r, survival function, s(.), and initial wealth W0):

(i) They provide the same optimum consumption profile c(t) to the problem

maxEµU

s.t.
R∞
0 s(t)e−rtc(t) ≤W0

(13)

20Note that whenever agents maximize their lifetime utility under budget constraints that are linear
in saving (such as p(t)(c(t)− y(t))dt ≤W0 where p(.) is an exogenous function), the VSL also equals
the marginal rate of substitution between mortality risk at age t and wealth age t.
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(ii) They provide the same value of life at a given age t0 :

V SLtn(c, t0) = V SLadd(c, t0)

Assume moreover than the ratio of the rate of discount over the rate of mortality,

RD
µ , is greater than 1 and decreases with age. Assume also that c, which solves (13), is

non increasing.

Then, for all t > t0 we have

V SLtn(c, t) < V SLadd(c, t) for all t > t0

V SLtn(c, t) > V SLadd(c, t) for all t < t0

Proof. See Appendix G.

As already mentioned, models used to discuss the social value of longevity are usu-

ally calibrated to fit a given consumption profile and a single value of life (corresponding

either to the value of life at a given age, or the average value of life for a given age

range). The fit may be obtained both with the additive and time neutral specifica-

tions. Proposition 8 shows however that opting for one or the other specification is not

without consequences. Relying on the additive model leads to assume greater values

of VSL at old ages than when using the time neutral model. This may significantly

alter policy recommendations. In practice "additivist" would give more importance to

the reduction mortality risk at old ages than "time neutralist"; these latter would care

more about mortality at young ages. In a caricatured view, additivist would urge the

government to focus on old-age cardiovascular diseases, while time neutralist would be

more concerned by the reduction of teenagers’ accidental deaths. Moreover, as it is the

extrapolation towards old ages that is of greater relevance for policy recommendation

(because most of the mortality reduction occur at old ages while value of life estimates

are derived from younger people), "additivist" would typically allocate a larger amount

of public resources to mortality risk reduction than "time neutralist". The following

Section aims at giving some insights on the magnitude of this divergence, when using

realistic mortality data.
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8.2 Numerical illustration

In this illustration, we assumed that we observe the consumption profile shown in figure

4b (while the rate of interest is assumed to be 3% and mortality rates equal to those

observed in year 2000 in the USA), and a VSL that equals 5 million dollars at age 40.

Again, such an observation may consistent both with the additive model (and a non

exponential discount function) and with the time neutral model. Both interpretations

lead to different extrapolations when evaluating the VSL at ages different than 40.

The result of these extrapolation is shown in Figure 5. We find, in agreement with

Proposition 8, that the time neutral model predicts that the VSL decline more rapidly

with age than the additive one. When looking at the VSL around age 80, where most

deaths occur, we find that the additive model predict a VSL that is 3.4 times larger

than the time neutral one.

We may now wonder whether this divergence in the age adjustment of the VSL is

likely to generate contrasted estimates of the value of longevity gains. To answer that

question, we compute how much adults living in the USA in 2000 would have been

ready to pay to maintain mortality rates at their 2000 levels instead of having them set

back at the 1970 levels. This measure of gains from increased longevity was suggested

by Murphy and Topel (2006), the results being reported in the Figure 6 of their paper.

At the difference of Murphy and Topel who only provided results based on the additive

model, we provide in Figure 6 of the present paper two kinds of estimates: one relying

on the additive model (and therefore very much similar to the one reported by Murphy

and Topel) and another one using the time neutral model. Compared to the additive

model, the time neutral model provides lower estimates for the value of longevity gains.

This is because both models where calibrated to provide the same value of life at age

40, while most of longevity gains occurred after that age. If we aggregate the gains for

the whole 2000 US population, the time neutral model provides an estimates that is

1.98 smaller than the additive model. In this case, switching from the additive model

to the time neutral would approximately lead to divide the estimates of the value of

longevity gains by a factor two.
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9 Discussion

More than fifty years ago, George Stigler, in a discussion bearing on the way precursors

modelled preferences over several commodities wrote:

"The faithful adherence for so long to the additive utility function strikes one as

showing at least a lack of enterprise. I think it showed also a lack of imagination: no

economic problem has only one avenue of approach" (Stigler, 1950, p394).

One might argue that the same statement currently applies to the theory of in-

tertemporal choice under uncertain lifetime.

Mortality risks were first considered by Yaari in a simple model that assumed ad-

ditively separable preferences. Yaari’s choice, which he did not discuss, consisted in

making an assumption of temporal risk neutrality. A major consequence of this choice

is that the rate of time discounting equals the sum of the rate of time preference and

the mortality rate. Since mortality rates are typically much lower than observed rates

of discount, Yaari’s model eventually provides a theory where time discounting owes

very little to mortality. The ongoing adherence to Yaari’s approach ended up gener-

ating the belief that mortality could not significantly contribute to human impatience,

unless particularly high mortality rates (either due to diseases or advanced ages) were

considered. Moreover, it has popularized the idea in economic theory that risk aversion

and impatience are orthogonal aspects of individual preferences.

The present paper shows that a different path, which is no more complex than

the one followed by Yaari, might have been pursued. It consists in assuming that

individuals have no time preferences but exhibit temporal risk aversion, giving the

“time neutral model”. With this model, impatience has no ordinal origins, but results

from the combination of mortality risks and temporal risk aversion.

In order to show the plausibility of the time neutral model, I formally showed

that it can reproduce all the predictions of Yaari’s model, as long as heterogeneity in

mortality across agents is ignored. To my knowledge, Yaari’s model has never been

challenged by studies that used heterogeneity in mortality. Thus, today, there is no

empirical evidence indicating that Yaari’s model is better than the time neutral model.

In particular, the fact that Yaari’s formulation proved useful to study consumption

patterns, saving behaviors, labor supply, etc. under an uncertain lifetime cannot be

considered as an argument supporting Yaari’s model. The time neutral model would
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do at least as well.

The time neutral model provides new insights on the relation between risk aversion,

mortality and impatience. In Yaari’s model, impatience, measured by the rate of time

discounting, is almost exogenous (mortality having a minor role). In the time neutral

model, impatience is exclusively driven by mortality. Thus, unsurprisingly, we find that

both models have very different predictions about the impact of changes in mortality.

Illustration using historical data mortality were provided, showing that the time neutral

model may shed new light on the interrelation between longevity extension, capital

accumulation and the equilibrium rate of interest.

For matters related to the value of life, introducing temporal risk aversion, as with

the time neutral, generates risk aversion with respect to the length of life. As a con-

sequence agents are more willing to avoid the risk of an early death. The value of

a statistical life is then found to decline more rapidly with age with the time neutral

model than with the additive one. This is of particular importance for applied issues,

since debating the welfare impact of longevity extension generally requires a great deal

of extrapolation for assessing the benefits of reducing mortality at old ages. Numerical

illustrations, based on realistic demographic data, show that switching from the addi-

tive model to the time neutral one would lead to significantly revise the estimation of

the value of longevity gains.

Ultimately one would to discriminate between both models from empirical data.

The paper naturally suggests two lines of research. One possibility is to use empirical

data on the relation between age and the value of life. Unfortunately, as discussed in

Bommier and Villeneuve (2006) this approach cannot be conclusive today given the lack

of consensus in the empirical research that addresses this question. The other possibility

is to explore the interrelation between mortality and human impatience. Getting the

right intuitions about the role of mortality in the time neutral model requires, however,

a rigorous look at the formal expression of the rate of time discounting (Propositions 6

and 7). Even if impatience is driven by mortality, it is not always the case that greater

mortality implies greater impatience. In fact, in the time neutral model, mortality in the

short term increases impatience while mortality in the long term decreases it. Sufficient

conditions were provided for the first effect to dominate the second one, but one should

bear in mind that these conditions are not always fulfilled. As a consequence, in order to
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discriminate between Yaari’s model and the time neutral model, it is necessary to have,

on the one hand, a very good knowledge of differential mortality (so that heterogeneity

in short term mortality and heterogeneity in long term mortality can be compared)

and, on the other hand, excellent data on intertemporal choice that make it possible

to measure individuals’ rates of discount.

The ideal data set does not yet exist. A number of surveys report data on health,

health shocks, etc. but it is generally impossible to accurately translate this information

into short-term and long-term mortality rates. To my mind, the best available option is

to confront the well documented heterogeneity in mortality rates across gender, ethnic,

education and income groups with the heterogeneity in discount rates. I explained that

this confrontation actually supports the time neutral model over Yaari’s model. This

certainly does not provide sufficient evidence to abandon the notion of time preference.

However, there are even less arguments in favor of ignoring temporal risk aversion, as is

currently done. Accounting for temporal risk aversion is in fact crucial to understanding

the transformation that societies are going through along with the rapid evolution of

mortality rates.
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APPENDIX

A The time neutral model in practice

One attractive feature of Yaari’s model is its mathematical tractability. With Yaari’s

model, preferences over consumption profiles, conditional on an exogenous mortality

pattern, are represented by the utility function:

Eadd
µ (c) =

Z +∞

0
s(t)α(t)u(c(t))dt

Dealing with such a utility function is, technically speaking, particularly convenient

for several reasons. First, preferences over consumption after age t are independent

of consumption before age t. Therefore, in a dynamic setting, individuals need not

remember the past to have time consistent behaviors. Moreover the additive structure

of the expected utility function often leads to relatively simple optimization problems.

A number of life cycle problems (e.g. consumption smoothing, portfolio choices) can be

studied with standard techniques, such as dynamic programming, and, for particular

functions u , yield to simple solutions.

The object of this section is to discuss how the landscape is transformed when

working with the time neutral model. It will be split into three parts. A first subsec-

tion points at the technical difficulties that emerge when dealing with the time neutral

model. As we will see, there are no fundamental obstacles for using standard tech-

niques, such as dynamic programming. The main difference, however, is that explicit

solutions cannot readily be found. Nevertheless, it is possible to work with the time

neutral model without developing cumbersome numerical computations. First, as will

be explained in Subsection A.2, a linear approximation makes it possible to retrieve all

the simplicity of the additive model, while maintaining key aspects of the time neu-

tral model. Secondly, Subsection A.3 provides a very simple method for numerically

computing exact solutions when there are complete markets.
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A.1 History dependence and dynamic programming

Agents with time neutral preferences who face an exogenous mortality pattern have

preferences over (stochastic) consumption profiles represented by the utility function:

EµU
tn(c) =

Z +∞

0
s(τ)u(c(τ))φ0

µZ τ

0
u(c(τ 0))dτ 0

¶
dτ (14)

A noteworthy difference with the additive formulation is that preferences over con-

sumption after time t generally depend on consumption prior to t. From (14), given

a consumption profile ec between times 0 and t, preferences over consumption profiles

after time t are represented by the utility function:

Z +∞

t
s(τ)u(c(τ))φ0

µ
Ht +

Z τ

t
u(c(τ 0))dτ 0

¶
dτ (15)

where

Ht =

Z t

0
u(ec(τ))dτ

is the “stock of felicity” that has been accumulated up to time t. In a dynamic set-

ting, under the assumption of time consistency, the utility function (15) represents the

preferences of an agent of age t with past consumption ec. Preferences may then exhibit
history dependence, since past consumption affects Ht which enters into the agents’

utility functions.

At this point, however, it is useful to distinguish the case where φ0 is exponential

from the general case. When φ0(x) = e−kx, past consumption only matters in (15)

through a positive multiplicative factor, e−kHt , and therefore has no impact on individ-

ual preferences. Thus, precisely as with the additive model, individuals do no need not

to remember the past to be time consistent. In fact, when φ0 is exponential, preferences

represented by (3) are stationary (see Bommier, 2005) and the utility function (14) is

a particular case of stochastic differential utilities that are considered by Duffie and

Epstein (1992).

When φ0 is not exponential preferences over consumption after age t depend on

consumption before t. Thus, in order to have time consistent behaviors, individuals

have to bear in mind some of their history21. History dependence however takes a very

21Another route, pursued in Bommier (2006), involves assuming the history independence of prefer-
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simple form. Preferences over consumption after age t depend on the past only through

Ht, the stock of felicity that has been accumulated at age t. This largely resembles habit

formation problems, where preferences at age t depend on the past only through the

stock of habits that has been accumulated at time t. Dynamic programming can then

be implemented in a standard way, even though the technical problems that one has to

face are indisputably more complex. The dynamics involves two scalar state variables

(wealth and the stock of past felicity) instead of one (wealth) with the usual additive

case. For numerical applications going from one to two state variables only represents

a slight increase in complexity. Gomes and Michaelides (2003) and Polkovnichenko

(2005) produced papers on portfolio choice with habit formation that successfully deal

with similar (and significantly greater) technical difficulties. Their approach could be

replicated. Alternatively, one may opt for the simpler approaches developed in the

sections A.2 and A.3.

Since the economic literature has mostly focused on models that exhibit history

independence, one may wonder whether we should no restrict our attention to the

case where φ0 is exponential. One can interpret the time neutral model as the case

where agents have an additive lifetime felicity,
R T
0 u(c(t))dt, and are risk averse with

respect to lifetime felicity (risk aversion with respect to lifetime felicity being related

to the curvature of the function φ). By restricting the analysis to the case where φ0 is

exponential one would impose constant absolute risk aversion with respect to lifetime

felicity. This is less restrictive than imposing risk neutrality (as is done when using

the additively separable specification) but it is difficult to find any compelling reason

for ruling out decreasing or increasing absolute risk aversion with respect to lifetime

felicity. The assumption of decreasing absolute risk aversion, which has become very

popular for modelling preferences over monetary lotteries, may also prove to be very

natural for modelling preferences over lotteries over lifetime felicity. With such an

assumption, an individual’s risk aversion has to depend on the stock of felicity that

he/she has accumulated, and therefore on his/her age and past consumption.

ences and allowing for time-inconsistencies.
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A.2 A linear approximation of the time neutral

From Proposition 5, we know that all the predictions of Yaari’s model can be repro-

duced, up to infinitesimally small differences. Thus it must be the case that for some

specification the time neutral model has the same tractability as the additive specifica-

tion. The strategy involves assuming that consumption remains in a range [cmin, cmax],

such that the difference in welfare between having a high or a low level of consumption

is much smaller than the difference of welfare between being alive with a low level of

consumption and being dead22:

u(cmax)− u(cmin)

u(cmin)− 0
<< 1

For any c∗ in [cmin, cmax] one can write

u(c) = u(c∗)[1 + εv(c)]

with ε = u(cmax)−u(cmin)
u(c∗) << 1 and v(c) = u(c)−u(c∗)

u(cmax)−u(cmin) . The idea is then to approxi-

mate the utility function (14) by a first order approximation in ε. Following the lines

of the proof of Proposition 5, one can compute:

EµU
tn ' A+ ε

Z +∞

0
s(t)αµ(t)v(c(t))dt

where A is a constant and αµ is a discount function given by

αµ(t) =
1

s(t)

Z +∞

t
d(τ)φ0(τu(c∗))dτ

Thus, individuals approximately behave as if they were maximizing the expectation of:

Z +∞

0
s(t)αµ(t)v(c(t))dt

We are then back to an additive specification and retrieve all the tractability of Yaari’s

formulation. The fundamental difference with Yaaris’s formulation is that the discount

function is now related to mortality. This is of course of crucial importance for studying

22This actually involves assuming that the value of life is very large. In fact, the linear approximation
developped below corresponds to the limit case where the value of life is infinite.

36



the role of mortality changes.

Such an approximation preserves one of the main features of the time neutral model

(the strong relation between mortality and impatience) and proves to be pretty effi-

cient for studying the impact of mortality on consumption smoothing23. However, by

“forcing additivity”, we necessarily loose some features of the time neutral model, as

its ability to separate risk aversion and intertemporal elasticity of substitution. This

linear approximation will then be less advisable to study life cycle portfolio choices,

since it would lead to the same shortcomings as the standard additive case24.

A.3 Numerical solutions

In this section we explain how optimal life cycle behavior can be very readily and

quickly numerically computed when financial markets are complete. We give accounts

of the method without addressing the technical questions as to the conditions that

would ensure this method’s efficiency.

Following the martingale approach (see Duffie, 2001, for example), when financial

markets are complete, life-cycle optimization is equivalent to finding the consumption

process c that solves:

max
c

E
£
EµU

tn(c)
¤
subject to W = E

∙Z +∞

0
p(t)c(t)dt

¸
(16)

where p is a contingent price process. Rather than using (14), it proves more convenient

to use the equivalent representation:

EµU
tn(c) =

Z +∞

0
d(T )φ

µZ T

0
u(c(τ))dτ

¶
dT

It is clear that, when the function φ and u are concave, EµU
tn is concave. Resolution

of the maximization problem (16) can therefore be achieved using standard numerical

methods of convex optimization, as described in Boyd and Vandenberghe (2004). How-

23For example, if we use this additve approximation to study the example developed in Section 7.2,
we find that switching from 1950 to 2000 mortality should induce an increase of wealth at retirement
by 28%, in the CARA case, and 30% in the CRRA case. These predictions are close to those obtained
from an exact resolution of the time neutral (26% and 28%) and sharply contrast with those of the
additive model (14%).
24As explained in Bommier and Rochet (2006), when preferences are not additively separable, as in

the time neutral model, the optimal degree of risk taking varies along the life cycle. This is an intersting
feature that would be lost with the linear approximation.

37



ever, given the particular structure of the objective function it generally proves easier

to solve the optimization problem using the utility gradient approach25. Basically, one

has to compute the gradient of the utility function and to invert it. In the present

case, the utility gradient admits a simple expression. Under regularity conditions on

the functions φ and u, for any “small perturbation process” δc:

E
£
EµU

tn(c+ δc)−EµU
tn(c)

¤
' E

∙Z +∞

0
d(T )

µZ T

0
u0(c(t))δc(t)dt

¶
φ0
µZ T

0
u(c(τ))dτ

¶
dT

¸

Switching the order of integration:

E
£
EµU

tn(c+ δc)−EµU
tn(c)

¤
' E

∙Z +∞

0
δc(t)π(t)dτ

¸

with:

π(t) = u0(c(t))

Z +∞

t
d(T )φ0(

Z T

0
u(c(τ))dτ)dT

The first order conditions of the optimization problem (16) are thus:

u0(c(t))

Z +∞

t
d(T )φ0(

Z T

0
u(c(τ))dτ)dT = λp(t) for all t (17)

The core of the problem consists in inverting this equation, that is to obtain c(.) from

λp(.). Denoting z(t) = log(u0(c(t))) the problem is to find a fixed point of the mapping:

Ω :

½
z ∈ C(R+,R)→ Ω [z] ∈ C(R+,R)

Ω [z] (t) = log(λp(t))− log
³R +∞

t d(T )φ0
³R T
0 g(z(τ))dτ

´
dT
´

where g = u◦ [u0]−1◦exp . Here [u0]−1 denotes the reciprocal of u0 and ◦ the composition

operator26.

It occurs that when relative risk aversion with respect to length of life is small

enough, or when the value of life large enough, the mapping Ω is a contraction27. Its

fixed point can be found by a simple iteration process, looking at the limit of a sequence

such that zn+1 = Ω(zn), the limit being independent of z0.

The strategy to solve the optimization problem (16) is then as follows. Step 1: for

25A detailed account of this approach can be found in Duffie (2001).

26 In the standard isoelastic case, u(c) = c1−γ−1
1−γ + u0, we have g(z) = e

− 1−γ
γ

z−1
1−γ + u0.

27A formal proof is available upon request.
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any λ, find the consumption process cλ that solves the first order conditions (17) by com-

puting the fixed point of Ω by iteration. Step 2: compute Wλ = E
hR +∞
0 p(t)cλ(t)dt

i
and look for the value of λ such that Wλ −W equals zero28.

Moreover, when u is isoelastic (that is when u(c) = c1−γ−1
1−γ +u0), the function [u0]

−1

is homogenous, which makes it possible to merge steps 1 and 2 into a single fixed point

search. Resolution of (16) involves finding the fixed point that solves z = bΩ[z] where:
bΩ[z](t) = γ log

µ
E

∙Z +∞

0
p(t) exp(−1

γ
eΩ[z](t))¸¶− γ log(W ) + eΩ[z](t)

with:

eΩ [z] (t) = log(p(t))− logÃZ +∞

t
d(T )φ0

ÃZ T

0

e−
1−γ
γ

z(τ) − c1−γ0

1− γ
dτ

!
dT

!

With the parameters that allows standard estimates of the rate of discount and the

value of a statistical life to be matched, the mapping bΩ was found to be a contraction,
and its fixed point could easily be found by looking at the limit of a sequence such

that zn+1 = bΩ(zn),whatever initial value z0 was chosen. Intuitively, working along this
line, involves (i) starting with an arbitrary initial consumption profile (ii) computing

the rate of time discounting that would be obtained with such a consumption profile

(iii) looking for the optimal consumption profile, assuming an exogenous rate of time

discounting equal to the one found in the step (ii). And then, iterating steps (ii) and

(iii) until a satisfactory convergence is reached. The method proved to be extremely

efficient and the he consumption profiles shown in Figure 4 were computed in such a

way in less than a second.

B Proof of Proposition 3

By integrating by parts (6), we find that:

EµU(c) =

Z +∞

0
s(t)

∂U(c, T )

∂T
|T=tdt

28Remark that cλ solves (16) when W is replaced by Wλ. That means that λ is the marginal utility
of wealth when wealth equals Wλ. Thus λ and Wλ are negatively related when EµU

tn is concave
(which is the case when φ and u are concave). Solving Wλ −W = 0 involves then finding the zero of a
decreasing function.
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where s(t) is the survival function.

In the additive case, ∂Uadd(c,T )
∂T |T=t = α(t)u(c(t)) and

EµU
add(c) =

Z +∞

0
s(t)α(t)u(c(t))dt (18)

which implies that ∂EµUadd(c)
∂c(t) = s(t)α(t)u0(c(t)) and RDadd

µ (c, t) = −s0(t)
s(t) −

α0(t)
α(t) .

In the time neutral case, ∂Utn(c,T )
∂T |T=t = u(c(t))φ0(

R t
0 u(c(t))dt), and we find:

EµU
tn(c) =

Z +∞

0
s(t)u(c(t))φ0

µZ t

0
u(c(τ))dτ

¶
dt (19)

so that:

∂EµU
tn(c)

∂c(t)
= u0(c(t))

∙
s(t)φ0(

Z t

0
u(c(τ))dτ) +

Z +∞

t
s(t1)u(c(t1))φ

00
µZ t1

0
u(c(τ))dτ

¶
dt1

¸

and

RDtn
µ (c, t) =

−s0(t)φ0(
R t
0 u(c(τ))dτ)

s(t)φ0(
R t
0 u(c(τ))dτ) +

R +∞
t s(t1)u(c(t1))φ

00
(
R t1
0 u(c(τ))dτ)dt1

(20)

or also:

RDtn
µ (c, t) = µ(t)−

µ(t)
R +∞
t s(t1)u(c(t1))φ

00
(
R t1
0 u(c(τ))dτ)dt1

s(t)φ0(
R t
0 u(c(τ))dτ) +

R +∞
t s(t1)u(c(t1))φ

00
(
R t1
0 u(c(τ))dτ)dt1

which, after integration by parts of the denominator of the fraction, gives (8).

C Proof of proposition 4

From (8), by integration by parts of the numerator we obtain:

RDtn
µ (c, t) = µ(t)− µ(t)

−s(t)φ0(
R t
0 u(c(τ))dτ) +

R +∞
t d(t1)u(c(t1))φ

0
(
R t1
0 u(c(τ))dτ)dt1R +∞

t d(t1)φ
0
(
R t1
0 u(c(τ))dτ)dt1

and therefore:

RDtn
µ (c, t) =

−s0(t)R +∞
t d(t1)

φ
0
(

t1
0 u(c(τ))dτ)

φ
0
( t
0 u(c(τ))dτ)

dt1
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Now for all x and x0:

φ0(x)

φ0(x0)
= exp

µ
−
Z x

x0

−φ00(z)
φ0(z)

dz

¶

Thus:

RDtn
µ (c, t) =

−s0(t)R +∞
t d(t1) exp

³
−
R g(t1)
g(t)

−φ00(z)
φ0(z)

dz
´
dt1

(21)

where g(t) =
R t
0 u(c(τ))dτ. The function g(t) increasing function since it is assumed

that u(c(τ)) ≥ 0 for all τ . Thus g(t1) ≥ g(t) for all t1 ≥ t. It is then clear from 21 that

the greater the concavity of φ the greater the rate of discount RDtn
µ (c, t).

D Proof of Proposition 5

As in equation (2), denote by α and u a pair of discount and instant utility functions

that characterize the additive preferences. The corresponding expected utility function,

EµU
add, defined by (6), can be rewritten as in (18). The positivity of the rates of

discount implies that µ(t)− α0

α (t) > 0 for all t.

For any ε > 0 define U tn
ε by:

U tn
ε (c, T ) = φµ

µZ T

0
uε(c(t))dt

¶

with

uε(c(t)) = 1 + εu(c(t)) and φµ(x) =

Z x

0
(α(t)− α0(t)

µ(t)
)dt

Because α > 0 and µ(t) − α0

α (t) > 0, the function φµ has a positive derivative. Also

u0ε = εu0 > 0. Thus, the utility functions U tn
ε represent time neutral preferences.

From (19), we know that the corresponding expected utility function can be written

as:

EµU
tn
ε (c) =

Z +∞

0
s(t)uε(c(t))φ

0
µ

µZ t

0
uε(c(τ))dτ

¶
dt

I show below that, for any consumption paths c0, c1, c, such that c1(t) > c0(t) for all

t,we have:

EµU
tn
ε (c1)−EµU

tn
ε (c0) > 0 (22)
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and

lim
ε→0

µ
EµU

tn
ε (c)−EµU

tn
ε (c0)

EµU tn
ε (c1)−EµU tn

ε (c0)

¶
=

EµU
add(c)−EµU

add(c0)

EµUadd(c1)−EµUadd(c0)
(23)

This is what is meant by “converges weakly up to positive affine transformations”.

Clearly, these conditions guarantee that at the limit ε→ 0 the expected utility function

EµU
tn
ε will represent the same preferences over consumption profiles as EµU

add.

Inequality (22) is a direct consequence of the fact that the utility functions U tn
ε are

increasing in consumption that occurs before death. Equality (23) is shown thereafter

using a Taylor expansion in ε. We have:

EµU
tn
ε (c) =

Z +∞

0
s(t)uε(c(t))φ

0
µ

µZ t

0
uε(c(τ))dτ

¶
dt

Replacing uε(c, t) by 1 + εu(c(t)) and keeping only the zero and first order terms in ε

we find:
EµU

tn
ε (c) =

R +∞
0 s(t)φµ(t)dt

+ε
R +∞
0 s(t)u(c(t))φ0µ(t)dt

+ε
R +∞
0 s(t)φ

00
µ(t)

³R t
0 u(c(τ))dτ

´
dt

+o(ε)

(24)

The first term is a constant, independent of c and ε, that I denote by A. Switching the

order of integration in the third term, we find that:

Z +∞

0
s(t)φ00µ(t)

µZ t

0
u(c(τ))dτ

¶
dt =

Z +∞

0
u(c(t))

µZ +∞

t
s(τ)φ00µ(τ)dτ

¶
dt (25)

Proceeding to an integration by parts and using φ0µ(t) = α(t)− α0(t)
µ(t) , we compute:

R +∞
t s(τ)φ00µ(τ)dτ =

h
s(t)

³
α(t)− α0(t)

µ(t)

´i+∞
t
−
R +∞
t s0(τ)

³
α(t)− α0(t)

µ(t)

´
dτ

= −s(t)
³
α(t)− α0(t)

µ(t)

´
−
R +∞
t [s0(τ)α(τ) + α0(τ)s(τ)] dτ

= s(t)α
0(t)
µ(t)

(26)

Using (25) and (26), and replacing φ0µ(t) by α(t)−
α0(t)
µ(t) in the second term of (24), we

eventually obtain:

EµU
tn
ε (c) = A+ ε

Z +∞

0
s(t)α(t)u(c(t))dt+ o(ε) (27)
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The first order term is thus precisely EµU
add(c) and (23) directly follows from (27).

E Proof of Proposition 6

The result for the additive case is immediate from equation (7). For the time neutral

case, the result is also obvious from equation (8) when t2 ≤ t1. The only difficult case

is when t2 > t1. In this instance, equation (20) can be rewritten as:

RDtn
µ (c, t) = µ(t1)

φ0(
R t1
0 u(c(τ))dτ)

φ0(
R t1
0 u(c(τ))dτ) +

R +∞
t1

s(τ)
s(t1)

u(c(τ))φ
00
(
R t1
0 u(c(τ1))dτ1)dτ

(28)

Note that s(τ)
s(t1)

= exp(−
R τ
t1
µ(t)dt). So we have:

∂
s(τ)
s(t1)

∂µ(t2)
= − s(τ)

s(t1)
for t1 < t2 < τ

∂ s(τ)
s(t1)

∂µ(t2)
= 0 for t1 < τ < t2

This implies that for t2 > t1 :

∂
∂µ(t2)

³R +∞
t1

s(τ)
s(t) u(c(τ))φ

00
(
R t1
0 u(c(τ1))dτ1)dτ

´
=

−
R +∞
t2

s(τ)
s(t1)

u(c(τ))φ
00
(
R τ
0 u(c(τ1))dτ1)dτ

which explains why we obtain (9) by taking the derivative of (28) with respect to µ(t2).

F Proof of Proposition 7

For the first point, rewrite (20) for i = 1, 2:

RDtn
µi
(c, t) = µi(t)

φ0(
R t
0 u(c(τ))dτ)R +∞

t µi(τ) exp
¡
−
R τ
t µi(τ1)dτ1

¢
φ
0
(
R τ
0 u(c(τ1))dτ1)dτ

and use that for all τ ≥ t inequality (10) implies that exp
¡
−
R τ
t µ2(τ1)dτ1

¢
≥ exp

¡
−
R τ
t µ1(τ1)dτ1

¢
and µ2(τ) ≥ µ1(τ)

µ2(t)
µ1(t)

to obtain that RDtn
µ2
(c, t) ≤ RDtn

µ1
(c, t).

For the second point, use (8) to write that for i = 1, 2

RDtn
µi
(c, t) = µi(t)− µi(t)

R +∞
t exp

¡
−
R τ
t µi(τ1)dτ1

¢
u(c(τ))φ

00
(Iτ )dτR +∞

t µi(τ) exp
¡
−
R τ
t µi(τ1)dτ1

¢
φ
0
(Iτ )dτ
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where Iτ =
R τ
0 u(c(τ1))dτ1. Using that µ2(τ) ≥ µ1(τ)

µ2(t)
µ1(t)

(from inequality (10)) and

that φ
00
< 0 we obtain

RDtn
µ1
(c, t)−RDtn

µ2
(c, t) ≥ µ1(t)− µ2(t) + µ1(t)∆

with

∆ =

R +∞
t k(τ)g(τ)dτR +∞

t g(τ)dτ
−
R +∞
t k(τ)h(τ)g(τ)dτR +∞

t h(τ)g(τ)dτ

where k(τ) = −φ00(Iτ )
φ0(Iτ )

u(c)
µ1(τ)

, h(τ) = exp
¡
−
R τ
t (µ2(τ1)− µ1(τ1))dτ1

¢
and

g(τ) = µ1(τ) exp
¡
−
R τ
t µ1(τ1)dτ1

¢
u(c(τ))φ

0
(Iτ ). The functions k, g and h are non-

negative. Note also that, by assumption, h is non-decreasing while k is non-increasing.

Thus, ∆ is non-negative29 and RDtn
µ1
(c, t) − RDtn

µ2
(c, t) ≥ µ1(t) − µ2(t). The fact that

RDadd
µ1
(c, t) − RDadd

µ2
(c, t) = µ1(t) − µ2(t) is a direct consequence of (7). The proof of

Proposition 7 is then complete.

G Proof of Proposition 8

Write

V SL(t) = −
∂EµU
∂µ(t)

∂EµU
∂c(t)

Now, since:

s(t) = exp

µ
−
Z t

0
µ(τ)dτ

¶
we have

∂EµU

∂µ(t)
= −

Z +∞

t

∂EµU

∂s(τ)
dτ

and

V SL(t) =

Z +∞

t

∂EµU
∂s(τ)

∂EµU
∂c(τ)

∂EµU
∂c(τ)

∂EµU
∂c(t)

dτ =
1

s(t)e−rt

Z +∞

t
s(τ)e−rτ

∂EµU
∂s(τ)

∂EµU
∂c(τ)

dτ

29To prove that ∆ ≥ 0 one can show that the function

f(x) =
x

t

k(τ)g(τ)dτ
x

t

h(τ)g(τ)dτ −
x

t

k(τ)h(τ)g(τ)dτ
x

t

g(τ)dτ

is non-decreasing (and therefore non-negative) for x ≥ t.

44



Now compute
∂EµUadd

∂s(τ)

∂EµUadd

∂c(τ)

=
1

s(τ)

uadd(c(τ))

u0(c(τ))

so that

V SLadd(t) =
1

s(t)e−rt

Z +∞

t
e−rτ

uadd(c(τ))

u0(c(τ))
dτ

For time neutral specification:

∂EµUtn

∂s(τ)

∂EµUtn

∂c(τ)

=
utn(c(τ))φ0

¡R τ
0 u(c(τ1))dτ1

¢
u0(c(τ))

R +∞
t d(τ)φ0

¡R τ
0 u(c(τ1))dτ1

¢
dτ
=

1

s(τ)

RD(τ)

µ(τ)

utn(c(τ))

u0(c(τ))

And

V SLtn(t) =
1

s(t)e−rt

Z
e−rτ

RD(τ)

µ(τ)

utn(c(τ))

u0(c(τ))
d

That implies

V SLtn(t)

V SLadd(t)
=

R +∞
t

RD(τ)
µ(τ)

utn(c(τ))
uadd(c(τ))

h(τ)dτR +∞
t h(τ)dτ

with h(τ) = e−rτ u
add(c(τ))
u0(c(τ)) > 0. Now, because it is assumed the same intertemporal

elasticity of substitution in both the time neutral model and the additive models, it

must be the case that utn(c(τ)) = uadd(c(τ)) + δ where δ is a constant. We obtain

V SLtn(t)

V SLadd(t)
=

R +∞
t

RD(τ)
µ(τ) (1 +

δ
uadd(c(τ))

)h(τ)dτR +∞
t h(τ)dτ

Now remind that RD(τ) > µ(τ). Since V SLtn(t0) = V SLadd(t0), it must be the

case that δ < 0. Since c is non-increasing, (1+ δ
uadd(c(τ))

) is non increasing. It is also the

case of RD(τ)
µ(τ) , by assumption. That implies that

V SLtn(t)
V SLadd(t)

is a non increasing function,

which completes the proof of Proposition 8.
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Figure 1:  Mortality Rate at Age 30 (Historical Data from the USA)
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Figure 2:  Life Expectancy at Age 30 (Historical Data from the USA)
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Figure 3: Rate of Discount at Age 30 According to Historical Mortality rates

Case A (additive model)
Case B (time neutral model − CARA)
Case C (time neutral model − CRRA)
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Figure 4b: Consumption. Time neutral (CARA)

consumption (with 1950 mortality rates)
consumption (with 2000 mortality rates)
income

Age (years)

th
ou

sa
nd

 d
ol

la
rs

/y
ea

r

20 30 40 50 60 70 80

0
10

20

Figure 4c: Consumption. Time neutral (CRRA)
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Figure 4d: Wealth. Additive model

wealth (with 1950 mortality rates)
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Figure 4e: Wealth. Time neutral (CARA)

wealth (with 1950 mortality rates)
wealth (with 2000 mortality rates)

+26%
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Figure 5:  Rate of interest in steady−state general equilibria

Historical and projected US mortality.
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VSL=5 million $ at age 40, per calibration
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